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On the zeros of the zeta function and eigenvalue problems

M. R. Pistorius∗

August 5, 2016

Abstract. In this paper we provide a proof of the Riemann Hypothesis by relating the non-trivial zeros of

the zeta function to a certain Sturm-Liouville eigenvalue problem on the unit interval.

1 Main result

The Riemann Hypothesis (RH) is the conjecture that the non-trivial zeros of the Riemann zeta function
ζ(s) all have real part equal to 1

2 . In [3] it was established that the function ζ(s) which is forℜ(s) > 1
defined by

ζ(s) =

∞
∑

n=1

1

ns

can be extended to a meromorphic function with a unique simple pole at s = 1, by the identification
of an entire function ξ(s) that satisfies the functional equation

ξ(s) = ξ(1 − s)

and that is given in terms of ζ(s) and the Gamma function Γ(s) by

ξ(s) =
s(s − 1)

2
π−s/2

Γ

(

s

2

)

ζ(s).

RH is phrased as follows in terms of Ξ(t) = ξ(1
2 + it):

Ξ(t) = 0 ⇒ t ∈ R.

Theorem 1 RH holds true, and the zeros t1, t2, . . . are such that

∀ε > 0 :

∞
∑

n=1

| tn |
−1−ε < ∞. (1)
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A function similar toΞ(t) was shown in [2] to have only real zeros, by linking this function to a certain
operator of Sturm-Liouville type. Inspired by this approach, we identify another Sturm-Liouville
problem, the eigenfunctions of which are related to Ξ(t), and deduce by drawing on classical results
that the zeros t of Ξ(t) are real; the eigenvalue problems are presented in Section 2, while the proof of
Theorem 1 is given in Section 3.

2 A class of eigenvalue problems

Let D = C2([0, 1],C) denote the set of C2 functions f : [0, 1]→ C and let p, q and r : [0, 1]→ C be Borel
functions that are such that

∫ 1

0

{ |p(x)| + |q(x)| + |r(x)| }dx < ∞. (2)

For f ∈ D denote by f ′ the derivative of f and consider the following boundary problem of Sturm-
Liouville type on the unit interval (0, 1):

(

f ′

r

)′

+ (λ2 p + q ) f = 0,

f (0) = 1, f (1) = 0,

f ∈ D, λ ∈ C.

(3)

The following result which concerns the eigenfunctions u( · , λ) of (3) and the corresponding eigen-
values λ2 is well-known (the statement is taken from [1, Theorem 8.3.1]):

Theorem 2 Suppose that p, q and r are (a) nonnegative, (b) satisfy (2), and are such that (c) for any x,
0 < x < 1,

∫ x

0

p(z) dz > 0,

∫ 1

x

p(z) dz > 0,

∫ 1

0

r(z) dz > 0

and (d) if for some x1, x2, 0 ≤ x1 < x2 ≤ 1 we have

∫ x2

x1

p(z) dz = 0,

then

∫ x2

x1

|q(z)|dz = 0.
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Then the boundary problem (3) has at most countably many eigenvalues λ2
1
, λ2

2
, . . . , all of which are real, and

which are such that

∀ε > 0 :
∑

λn,0

|λn|
−1−ε < ∞. (4)

The eigenfunctions u(x, λn) are orthogonal in the sense that

∫ 1

0

p(x) u(x, λn) u(x, λm) dx = 0, n , m.

We next present a particular family of solutions to (3). For any µ ∈ C and non-negative Borel-
measurable function b : R+ → R+ that satisfies

(a)

∫ ∞

0

b(y) dy = 1; (b) ∀t ∈ R+ :

∫ ∞

0

exp{ty} b(y) dy ∈ R+, (5)

define the function vb( · , µ ) : [0, 1]→ C by

vb(x, µ) =

∫ ∞

0

cos

(

µ

(

exp{x} − 1

exp{1} − 1

)

y

)

b(y) dy. (6)

Lemma 3 For µ ∈ C that is such that

vb( 1 , µ ) = 0, (7)

vb( · , µ ) is an eigenfunction of (3) with eigenvalue µ2 which is real.

Proof. Let p, q and r be given by

r(x) = exp{x},

p(x) = exp{−x}

(

exp{x}

exp{1} − 1

)2

,

q(x) = 0.

As integration and differentiation may be interchanged under the integrability condition (5), it is
straightforward to check that v = vb(·, µ) is such that v(0) = 1 and v(1) = 0 and for any 0 < x < 1

v′′(x) = −µ2

(

exp{x}

exp{1} − 1

)2

v(x) + v′(x)

= v(x) [−µ2 r(x) p(x) − r(x) q(x) ] + v′(x)

[

r′(x)

r(x)

]

,

Hence vb(·, µ) is an eigenfunction of (3) with eigenvalue µ2 which is real by Theorem 2. QED

3



3 Proof of Theorem 1

As noted in [3], Ξ admits the following expression as Fourier cosine integral:

Ξ(t) = 4

∫ ∞

1

d(x
3
2ψ′(x))

dx
x−

1
4 cos

(

t

2
log x

)

dx, (8)

ψ(x) =

∞
∑

n=1

exp{−n2πx}.

An exponential change-of-variables in (8) yields the following well-known alternative expression for
Ξ(t):

Ξ(t) = 2

∫ ∞

0

cos(tx)Φ(x) dx,

Φ(x) = 2π exp
{

5x

2

} ∞
∑

n=1

(

2π exp{2x}n2 − 3
)

n2 exp{−n2π exp{2x}}.

As Φ(x) has the asymptotic decay (where f (x) ∼ g(x) if limx→∞
f (x)
g(x) = 1)

Φ(x) ∼ 4π2 exp
{

9x

2
− π exp{2x}

}

, x −→ ∞,

it satisfies the exponential integrability condition in (5) (with b(x) replaced by Φ(x)). Also, Φ(x) is
positive for any x ∈ R+. In terms of the function Ψ(x) given by 2Φ(x)/Ξ(0) we have from Lemma 3
that

{ t2 ∈ C : vΨ(1, t) = 0 } ⊂ R. (9)

The observation

∀t ∈ C : Ξ(t) = Ξ(0) vΨ(1, t)

in conjunction with (9) and the fact that Ξ(t) > 0 for all t with ℜ(t) = 0 completes the proof of RH.
Eq. (1) follows by combining Theorem 2 and Lemma 3. QED
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