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On the zeros of the zeta function and eigenvalue problems

M. R. Pistorius®

August 5, 2016

Abstract. In this paper we provide a proof of the Riemann Hypothesis by relating the non-trivial zeros of
the zeta function to a certain Sturm-Liouville eigenvalue problem on the unit interval.

1 Main result

The Riemann Hypothesis (RH) is the conjecture that the non-trivial zeros of the Riemann zeta function
C(s) all have real part equal to % In [3] it was established that the function {(s) which is for R(s) > 1
defined by

-y
n=1

can be extended to a meromorphic function with a unique simple pole at s = 1, by the identification
of an entire function &(s) that satisfies the functional equation

&) =<1 —s)

and that is given in terms of {(s) and the Gamma function I'(s) by

s(s—1)

&0 = T2l (2) o

RH is phrased as follows in terms of E(t) = 5(% + it):

=0 = tekR.

Theorem 1 RH holds true, and the zeros t1,ts, . .. are such that

Ve>0: Z £, ]717¢ < co. (1)
n=1
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A function similar to E(t) was shown in [2] to have only real zeros, by linking this function to a certain
operator of Sturm-Liouville type. Inspired by this approach, we identify another Sturm-Liouville
problem, the eigenfunctions of which are related to Z(t), and deduce by drawing on classical results
that the zeros t of E(t) are real; the eigenvalue problems are presented in Section 2] while the proof of
Theorem[Ilis given in Section 3l

2 A class of eigenvalue problems

Let D = C%([0, 1], C) denote the set of C? functions f : [0,1] — Cand let p, gand 7 : [0, 1] — C be Borel
functions that are such that

1
fo (POl + 19() + Fl} dx < oo, @)

For f € D denote by f’ the derivative of f and consider the following boundary problem of Sturm-
Liouville type on the unit interval (0, 1):

(f7) +(Ap+q)f =0,

fO)=1, f1)=0,
feD, AeC

The following result which concerns the eigenfunctions u(-,A) of (3) and the corresponding eigen-
values A? is well-known (the statement is taken from [I, Theorem 8.3.1]):

Theorem 2 Suppose that p,q and r are (a) nonnegative, (b) satisfy @), and are such that (c) for any x,

O0<x<1,
X 1 1
fp(z)dz>0, fp(z)dz>0, fr(z)dz>0
0 X 0

and (d) if for some x1,x7, 0 < x1 < x2 < 1 we have

X2
f p(z)dz =0,
X1

then

XD
f lg(z)|dz = 0.
X1



Then the boundary problem () has at most countably many eigenvalues A2, A2

5+ -+, all of which are real, and
which are such that

Ve>0: Z N7 < oo, (4)
An#0

The eigenfunctions u(x, A,) are orthogonal in the sense that

1
f D) (e Ay Ay dr =0, 1% m.
0

We next present a particular family of solutions to (3). For any p € C and non-negative Borel-
measurable function b : R, — R, that satisfies

(a) j; b(y)dy =1, (b) VteR,: f(; expitytb(y)dy € Ry, ®)

define the function vy(-, p) : [0,1] = Cby

® {x} -1
vb(x,u)=fo C%(H(%)y)b(y)dy- (6)

Lemma 3 For u € C that is such that
u(1l,pn) =0, (7)

op( -, w) is an eigenfunction of B) with eigenvalue yu? which is real.

Proof. Let p, g and r be given by

M) = explal,

expix} 2
plx) = exp{-x} (W) ,
gx) = 0.

As integration and differentiation may be interchanged under the integrability condition (), it is
straightforward to check that v = v,(-, u) is such that v(0) = 1 and v(1) = 0 and forany 0 < x < 1

vy - o [Pl Y’ :
v(x) = u (exp{l} _1) v(x) + v’ (x)
_ _2 _ iy | 1)
= o(x)[—pr(x)plx) —r(x)q(x)] + ' (x) [ o ],
Hence vy(-, ) is an eigenfunction of () with eigenvalue u? which is real by Theorem 2l QED
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3 Proof of Theorem/[I]

As noted in [3], E admits the following expression as Fourier cosine integral:

(1
=
|

©d Sy 1 t
4]1‘ Wx'l cos(zlogx) dx, (8)

Z exp{—n*nx}.

n=1

PN
=
N
I

An exponential change-of-variables in (8) yields the following well-known alternative expression for

E(t):

E(t) 2 f(; ) cos(tx) @(x) dx,

D(x)

271 exp{ } Z 2n exp{2x} n® — 3) n? exp{—n27-c expi{2x}}.
n=1

As ®(x) has the asymptotic decay (where f(x) ~ g(x) if lim,—e % =1)

O(x) ~ 472 exp{g?x - nexp{Zx}}, X — 00,

it satisfies the exponential integrability condition in () (with b(x) replaced by ®(x)). Also, ®(x) is
positive for any x € R;. In terms of the function W(x) given by 2d(x)/Z(0) we have from Lemma [3]
that

{# € C:vy(l,t) =0} CR. )

The observation

VteC:  E(t) = E(0)ow(l,t)

in conjunction with (@) and the fact that Z(t) > 0 for all f with R(f) = 0 completes the proof of RH.
Eq. (@) follows by combining Theorem [2land Lemma[3 QED
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