Un livre pour Alain Debreil, alias AD

Trop cher !!
Mais, riche !!

Cordialement,
Yannguyen

" Un coup de dés jamais n'abolira le hasard, Mallarmé "


Yakov Berkovich ; Zvonimir Janko : Groups of Prime Power Order. (De Gruyter Expositions in Mathematics) 1st Edition.


ISBN : 978-3110207170



Kindle
$\$174.96 $


Hardcover
from $\$206.00$



Page numbers are just like the physical edition
Length: 639 pages

Kindle for iPad
Kindle for iPhone
Kindle for Android Phones
Kindle for PC*
Kindle for Mac


TOIC :

This volume constitutes the third part of the impressive contributions on p-groups in recent times by the authors; besides that, in this volume one can find 892 so-called Research Problems and Themes, only a few of them are solved. There are 52 sections here and 18 appendices as well. As there is a wealth of totally new results to mention in this book, we state here only a few.

In this Volume 3 the following problems are solved, all with full proofs,
1)

the classification of p-groups containing only one maximal subgroup which is neither Abelian nor minimal non-Abelian;
2)

the classification of groups all of whose nonnormal subgroups are of equal order;
3)

the classification of p-groups all of whose nonnormal subgroups have normalizers of index p;
4)

the determination of the number of subgroups of given order in metacyclic p-groups;
5)

the computation of the order of the derived group of a group with subgroup breath 1;
6)

the classification of p-groups all of whose subgroups have derived subgroups of order at most p;
7)

the classification of p-groups G all of whose maximal Abelian subgroups containing a non-G-invariant cyclic subgroup of minimal order, say p n , have order at most p n+1 .

The authors give in addition in the Preface in Volume 3 a list of eighteen results proved on finite p-groups not existing in other books devoted to finite p-groups. We mention nine of them here; all eighteen subjects are to be found in Volume 3.
1)

2-groups of sectional rank 4;
2)

p-groups not being generated by certain minimal non-Abelian subgroups;
3)

classification of p-groups with precisely one maximal subgroup neither being Abelian nor minimal non-Abelian;
4)

classification of p-groups all of whose maximal subgroups have cyclic derived subgroups;
5)

p-groups of breadth 2;
6)

groups containing a soft subgroup;
7)

the classification of p-groups all of whose proper subgroups have derived subgroups of order at most p;
8)

the description of all possible sets of numbers of generators of maximal subgroups of 2-generator 2-groups;
9)

a proof of Schenkman’s theorem on the norm of a finite group and a new proof of Baer’s theorem on an arbitrary 2-group with non-Abelian norm.

An essential part in Volume 3 is devoted to the investigation of the influence of minimal non-Abelian subgroups on the structure of a p-group.

As suggested above we were only able to provide the reader of this review with a glimpse at the contents of this Volume 3. The conclusion is that the contents of the three volumes together give an upshot in our knowledge about p-groups. – Highly recommendated all this!

As to the reviews of Volumes 1 and 2 [see Y. Berkovich, Groups of prime power order. Vol. 1. de Gruyter Expositions in Mathematics 46. Berlin: Walter de Gruyter (2008; Zbl 1168.20001) and Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 2. Expositions in Mathematics 47. Berlin: Walter de Gruyter (2008; Zbl 1168.20002)].
Reviewer: R. W. van der Waall (Huizen)

Réponses

  • Berkovich, Yakov; Janko, Zvonimir
    Groups of prime power order. Vol. 2. (English) Zbl 1168.20002
    de Gruyter Expositions in Mathematics 47. Berlin: Walter de Gruyter (ISBN 978-3-11-020419-3/hbk). xv, 596 p. (2008).

    This is a monumental three-volume-work on the structure of finite p-groups; Vol. 1 (Zbl 1168.20001) and 2 are reviewed here, Vol. 3 (Zbl 1229.20001) follows later.

    There are too many p-groups of a given order! For instance, there are, up to isomorphism, 49.487.365.422 groups of order 2 10 (which is 1024). Nevertheless, it turns out that a lot of theorems can be concocted dealing with general structure questions on p-groups. In this review we will try to inform the reader what (among others) there is to be found in Vol. 1 and 2. Some results are hidden in the literature for deeply, and stated and proved here in a clever way. But a very substantial part contains totally new results. In the following some of them are mentioned without claiming completeness as exposed in the books.

    The reader will find in Vol. 1 for instance: Groups with a cyclic subgroup of index p, class number, character degrees, cyclic Frattini subgroups of p-groups, Hall’s enumeration principle, automorphisms, regular or pyramidal or maximal class p-groups, Abelian subgroups, power structure, counting theorems, Thompson’s critical subgroup, generators, classification of several types of p-groups, Schur multiplier, lattices of subgroups, powerful p-groups, isoclinism,..., Alperin’s problem on Abelian subgroups of small index, breadth and class numbers of p-groups. There are also fifteen Appendices in Vol. 1, as well as 700 research problems and themes! Highly recommended all this!

    In Vol. 2 one finds very recent results and/or classifications of: degrees of irreducible characters of Suzuki p-groups, 2-groups with small centralizer of an involution (and many, many more results on 2-groups), results of Blackburn, modular p-groups, quaternion-free 2-groups, classification of 2-groups with precisely three involutions, extraspecial p-groups, Hall chains, etc. There are eleven Appendices in Vol. 2, as well as (again) 700 research problems and themes. Also here, highly recommendated all this!

    All theorems are proved fully in a clear way.

    The contents of the volumes contribute fundamentally to the knowledge of p-groups. If the reader “goes through” the volumes, he/she will come to the conclusion that his/her knowledge on p-groups was only somewhat meager up to now; therefore, read these volumes over and over! Again, buy these books and learn from it!
  • Sur Amazon je trouve 5 volumes, qui croire ?

    Tout cela a l'air passionnant, mais quelle masse d'informations !!! De quoi faire de très beaux treillis de sous-groupes en tout cas ;-)
  • Quelle déprime, les $p$-groupes ! C'est la jungle, non ?
  • Il est possible de feuilleter le livre sur Amazon. Malheureusement il y a vraiment pas mal de fautes d'anglais.
  • Le nombre de 2-groupes de cardinal $2^{10}=1024$ voisine les 50 milliards, mais ce qui remarquable c'est que l'on peut produire des résultats généraux pour ces groupes.


    J'ai en main le dernier livre de A. A. Ivanov, The Mathieu Groups, chez CUP, dont le chapitre 9 parle de l'inévitabilité du groupe $M_{24}$.
    Le chapitre 3 discute des deux groupes simples de cardinal 20160, et finit sur les automorphismes du groupe $\mathfrak S_6$, ce qui devrait plaire évidemment à DSP.

    Cordialement,
    Yann
  • Bonsoir Poirot,

    Il semble que l'on soit déjà au volume 6 :

    Berkovich, Yakov G.; Janko, Zvonimir
    Groups of prime power order. Vol. 6. (English) Zbl 06893864
    de Gruyter Expositions in Mathematics 65. Berlin: De Gruyter (ISBN 978-3-11-053097-1/hbk). xii, 385 p. (2018).

    The highly acclaimed five volumes on p-groups, due to the authors, were published in [Groups of prime power order. Vol. 1. Berlin: Walter de Gruyter (2008; Zbl 1168.20001); Groups of prime power order. Vol. 2. Berlin: Walter de Gruyter (2008; Zbl 1168.20002); Groups of prime power order. Vol. 3. Berlin: Walter de Gruyter (2011; Zbl 1229.20001)] and [Groups of prime power order. Volume 4. Berlin: De Gruyter (2016; Zbl 1344.20001); Groups of prime power order. Vol. 5. Berlin: De Gruyter (2016; Zbl 1344.20002)]; view the respective referats in the Zentralblatt, whose reference-numbers are given under the keywords of this review.

    To me, the reviewer of Vol. 6, its appearance came as a total surprise! There are 70 sections, presenting structure theorems of p-groups, all given with proofs. In addition, 39 so-called appendices are mentioned, i.e. once again elaborating structures of p-groups, most of them with explaining about the hows and whys. A special feature consists of 493 exercises; the reader has been invited to work these out for themselves, but most of the exercises are provided with (hints to) solutions; the reviewer did find the exercises, illuminating in learning by advance students about the subjects related to p-groups. Indeed, a wealth of study and a gem! Let us not forget about, what is called, “Research Problems and Themes, VI”; there are, very impressive, 728 of these! The research problems do contain indeed structure questions that have not been solved today; a real toolkit for investigations.

    As before, in respect to the five volumes earlier in time, the authors did a formidable job. Some people did think, that with the classification of the finite simple groups, the subject of studying finite group theory came to end; only looking at the constants of the six volumes reveals already, that this opinion is totally wrong!

    Well, will there be a Volume 7? Time will learn. The six books constitute a fundamental source in learning and studying finite p-groups.
    Reviewer: Robert W. van der Waall (Amsterdam)


    .
  • La théorie des groupes (déjà le basique..:-S) !

    Quid de p-groupes, groupes finis ou infinis ?
  • Math Coss a écrit:
    Quelle déprime, les $p$-groupes ! C'est la jungle, non ?

    [size=large]L'introduction aux groupes de Lie pour la physique[/size]

    Plutôt d'accord ?
  • Bonjour, Je ne sais pas si c'est ici le lieu, mais au vu de ce qui a été évoqué plus haut sur le contenu des livres de Berkovich et Yanko, il paraît qu'il y a exactement six classes de p-groupes ayant un sous-groupe cyclique d'indice $p$.

    Alain pourrait nous poster s'il a le temps les treillis de ces groupes d'ordre $\leq 32$.
    Je propose aux personnes intéressées d'en donner quelques exemples, au moins dans le cas commutatif.

    Cordialement,

    Yann


    (Un coup d'œil rapide sur le livre d'Alain montre que parmi les quatorze groupes d'ordre 16, il y a exactement six qui ont un sous-groupe cyclique d'ordre 8.)
  • Ajoutons qu'il est bien connu qu'un tel sous-groupe est forcément distingué, et que parmi les groupes d'ordre $32$, $64$, $128$, etc., il y en a à chaque fois exactement six qui ont un sous-groupe cyclique d'indice $2$.


    et que parmi les groupes d'ordre $27$, $81$, $243$, etc., il y en a à chaque fois trois seulement qui ont un sous-groupe cyclique d'indice $3$.

    Cordialement, Y.



    Il est à noter que si le groupe diédral $D_n$ d'ordre $2n$ est un $p$-groupe, c'est que $p=2$ ;)


    .
  • Bonjour, Voici un argument élémentaire pour régler le cas commutatif sans passer par la classification.

    Nous avons une suite excate :
    $$ N=C_{p^{n-1}}\hookrightarrow G \to\!\!>\!\!> C_p=Q.$$
    Si $a\in G$ est un relevé d'un générateur du groupe quotient $Q$ de droite, on a sait que $a\notin N$ et $a^p\in N$.

    Si $a^p$ engendre $N$, l'élément $a$ est donc d'ordre $p^{n}={\rm Card}\; G$, et $G$ est cyclique.
    Sinon, $a^p=b^p$, pour $b\in N$, et $z=ab^{-1}$ est un élément d'ordre $p$ n'appartenant pas à $N$.

    Le groupe $G$ est donc le produit de $N$ et du groupe engendré par $z$.

    Conclusion : si $G$ est un $p$-groupe commutatif ayant un groupe cyclique d'indice $p$, alors ou bien $G$ est cyclique ou le produit d'un groupe cyclique de cardinal $p^{n-1}$ et d'un autre de cardinal $p$.

    Bien cordialement, Yann
    (Merci à BK pour cet argument)
Connectez-vous ou Inscrivez-vous pour répondre.