Probabilité et n va id

Bonjour

Soient X1,...,Xn n variables aléatoires identiquement distribuées.
Soit x dans R
A-t-on p( X1+ ... + Xn > x) = p(nX1 > x) ?

Merci d'avance

Réponses

  • Il n'y a aucune raison.
  • Illustration :
    Si X est une variable aléatoire entre 0 et 1, distribution uniforme.
    n = 100.
    La probabilité que $nX$ soit supérieur à 99 est de 1% ; la probabilité que $X_1+\cdots +X_{100}$ soit supérieur à 99 est quasi nulle.
    Tu me dis, j'oublie. Tu m'enseignes, je me souviens. Tu m'impliques, j'apprends. Benjamin Franklin
  • Je ne comprends pas pourquoi Iourran tu compares p(nX1 > 99) et p( somme des Xi > 100 ), il faut "le même x".
  • Je ne trouve pas de contre-exemple. Quelqu'un en aurait-il ?
  • Désolé, j'ai corrigé. Il fallait bien entendu lire 99 dans les 2 cas.
    Tu me dis, j'oublie. Tu m'enseignes, je me souviens. Tu m'impliques, j'apprends. Benjamin Franklin
  • A peu près n'importe quoi marche comme contre-exemple.
    Prenons $X_1$ et $X_2$ indépendantes suivant la loi de Bernoulli de paramètre $p$.

    $P(X_1+X_2>0)=1-(1-p)^2=p(2-p)$ tandis que $P(2X_1>0)=p$.
  • Je tente une remarque.

    Supposons $X_1,\dots,X_n$ de même loi, $\ge0$, de fdr continue et avec une espérance.

    On a : $E[X_1] = \int_{0}^{+\infty} P(X_1>x) dx$

    De même $E[X_1+\dots+X_n] = \int_{0}^{+\infty} P(X_1+\dots+X_n>x) dx$
    et $E[nX_1] = \int_{0}^{+\infty} P(nX_1>x) dx$

    Comme les deux espérances sont égales, par valeurs intermédiaires, il doit exister une valeur $x>0$ telle que $ P(X_1+\dots+X_n>x) = P(nX_1>x)$
  • Merci beaucoup pour vos remarques instructives.

    je me permets de poser une autre question :

    Soit X une variable aléatoire et Z la partie fractionnaire de X
    Z(omega) inclus dans l'intervalle 0;1

    Peut-on déterminer la répartition de Z sur 0;1 avec la formule des probabilités totales ?

    Merci d'avance
  • Bonjour.

    Je ne vois pas ce que la formules des probabilités totales vient faire, mais il est assez évident que la probabilité que Z soit entre a et b (des éléments de [0;1[) et la somme des probabilités que X soit entre n+a et n+b pour n variant dans $\mathbb Z$. Donc on utilise la $\sigma$-additivité.

    Cordialement.
  • @jp59:
    applique la formule des probabilités totales (sans conditionnement) relativement au système complet d'événements $\left\{~\lfloor X\rfloor = k,~k\in~\mathbb{Z}~\right\}$, naturellement associé à la variable aléatoire discrète $\lfloor X\rfloor$.
    Un grand classique des écrits/oraux de EC consiste à déterminer la fonction de répartition de la partie fractionnaire de $X$ où $X$ suit une loi exponentielle: tu pourras alors remplacer $\mathbb{Z}$ par $\mathbb{N}$ au niveau du système complet, et feras apparaître la somme d'une série géométrique convergente.
Connectez-vous ou Inscrivez-vous pour répondre.