Sde $Y_t=Y_0+W_t +\int_{0}^t \gamma(Y_s) ds$

Let $a,b :\mathbb{R} \to \mathbb{R}$
Suppose $a$ to be of class $C^1$ and $b$ continuous.
Suppose that $a(x) >0$ for every $x \in [0,T]$
Let $h :\mathbb{R} \to \mathbb{R}$ defined by $h(x)= \int_{0}^x \frac{1}{a(y)}dy$
Suppose $ \int_{- \infty}^0 \frac{1}{a(y)}dy = \int_{0}^ {\infty} \frac{1}{a(y)}dy$
$\gamma= \left( \frac{b}{a} - \frac{a'}{2} \right) \circ h ^ {-1}$

Let $X$ be a solution of $X_t =X_0 + \int_{0}^t a(X_s) dW_s + \int_{0}^t b(X_s) ds, t \in [0,T]$

1. Show that $h : \mathbb{R} \to \mathbb{R}$ is a bijection of class $C^2$
2. Show that $Y=h(X_t)$ solves $Y_t=Y_0+W_t +\int_{0}^t \gamma(Y_s) ds$
3. Determine $\tilde{b} : [0,T] \times \mathbb{R}$ such that $X$ solves
$X_t= X_0 + \int_{0}^t a(X_s) \circ dWs + \int_{0}^t \tilde{b}(X_s) ds , t \in [0,T]$,

$\circ$ means here the Stratonovitch equation.

_____________________

1. $h'= \frac{1}{a} >0$ sp $h$ strictly increasing so bijective, and $\frac1a$ derivable, so $h$ is class $C^²$

2.

$
\begin{align*}
dY_t&= h'(X_t) + \frac12 h''(X_t) d[X]_t \\
&= h'(X_t) dX_t +\frac12 \left( - \frac{a'(X_t)}{a^2(X_t)} a^2(X_t) dt \right) \\
&= \frac{a(X_t)}{a(X_t)} dW_t + [ \dfrac{b(X_t) }{a(X_t)} - \dfrac{a'(X_t)}{2} ] ds\\
&= dW_t + [ \frac{b}{a} - \frac{a'}{2}](X_t) dt \\
&= dW_t + [ \frac{b}{a} - \frac{a'}{2}]\circ h^{-1}(Y_t) dt \\
\end{align*}
$
\\

3. Comment feriez-vous pour la dernière question ? Maths Stack Exchange

Merci.

Réponses

  • Soient :

    + $T>0$
    + $(W_t)$ si a standard brownian motion adapted to the filtration e
    + $f : [0,T] \to \mathbb{R} $ in $L¹([0,T])$
    + $g: [0,T] \to \mathbb{R}$ in $ L^2([0,T])$
    + $R_t= \int_{0}^t \exp \left( - \int_{0}^{r} f(s) ds \right) g(r) dW_r$
    + $Y_t= \exp \left( \int_{0}^{t} f(s) ds \right)$ $(\star)$

    $
    \begin{cases}
    dX_t &= f(t)X_t dt + g(t) dW_t\\
    X_0 &= 0\\
    \end{cases}
    $

    1. Show that $R$ is well-defined
    2. Show that $Y$ is a gaussian process
    3. Show that $ t \mapsto \int_{0}^t f(s) ds$ has bounded variations
    4. Show that if $X$ is defined as $(\star)$, then $X$ solves the SDE
    5. let $X$ be a solution of the SDE, show that $X=Y$
    6. Can we use the usual theorems of existence and uniqueness ?

    _____________________

    1. $\int_{0}^{T} g(r) dW_r$ is a gaussian random variable with law $\mathcal{N}(0, {\lVert g \rVert}_2 ^2)$ because $g$ is square integrable.

    Let $\phi(r)=\exp \left( - \int_{0}^{r} f(s) ds \right) g(r)$,

    we have $\phi(r)^2=\exp( - 2 \int_{0}^r f(s) ds) g(r)^2 \leq \exp( 2 {\lVert f \rVert}_1 ) g(r)^2 $

    therefore $\int_0^T \phi(r)^2 dr \leq \exp( 2 {\lVert f \rVert}_1 ) {\lVert g \rVert}_2 ^2$

    so $R_t$ is well-defined.

    2. ???
    3. $ \psi :t \mapsto \int_{0}^t f(s) ds$ has for derivative $f$ and the total variation $TV(\psi)= \int_{0}^T \mid \psi' \mid =\int_{0}^T \mid f \mid$ and we know that $f \in L^1$

    4. We use Ito formula

    5. ???

    6. ????

    Comment feriez-vous ? Merci . [Maths Stack Exchange]
  • Zestiria. Tu sais que nous sommes sur un forum de langue française !
    Je ferme tes deux discussions. Reposte les en français.
    Et précise ce que SDE dans le titre veut dire pour toi.
    AD
Cette discussion a été fermée.