Intervalle [a,b]

Bonjour,

Soient $a,b \in \mathbb R$ tels que $a\leqslant b$.
$A = [a,b]$ et $B =\{(1-t)a+tb\ | t \in [0,1]\}$.
Je cherche à prouver par double inclusion que $A =B$.

Soit $f$ la fonction de $[0,1]$ dans $\mathbb R$ telle que $\forall t \in [0,1],\ f(t) = (1-t)a + tb$ .
$f(0) = a$ et $f(1) = b$.
$f$ est continue sur $[0,1]$, donc par le théorème des valeurs intermédiaires :
$\forall y \in [f(0),f(1)], \exists t \in [0,1]$ tel que $y = f(t)$, autrement dit si $y\in [a,b]$, il existe un $t\in [0,1]$ tel que $y = (1-t)a + tb$, donc $A\subset B$.

Soit $y \in B$.
$\exists t \in [0,1], y = (1-t)a + tb$ .
$y= a + t(b-a)$.
Comme $t \ge 0$ et $b \ge a$ , $y \ge a$.
$y-b=(1-t)(a-b)$.
Comme $1-t \ge 0$ et $a-b \le 0$ , $y \le b$.
$ a \le y \le b \Rightarrow y \in A$, donc $B \subset A$.

Finalement $A =B$.

La démonstration et les quantificateurs sont-ils corrects ? Merci -
(sinon où puis-je trouver les codes de format "maths" pour écrire ici ?)

Réponses

  • Bonjour,
    où puis-je trouver les codes de format "maths" pour écrire ici ?
    ce sont les codes du $\LaTeX$ . Tu pourras trouver un glossaire ici: https://fr.wikipedia.org/wiki/Aide:Formules_TeX#Catalogue
    Sur notre forum, tu écriras ces formules entre des balises $\$ $ pour que l'éditeur les compile. Tu pourras éditer ton premier message pour voir comment j'ai écrit tes formules en $\LaTeX$
  • Pour ta première inclusion, il y a un petit bug dans la troisième ligne. Sauras-tu le corriger ?
    Pour la deuxième inclusion, Tu écris "je prouve ensuite que"
    Il s'agit donc bien de détailler ces preuves , d'accord ?
    Tu pourras utiliser le sens de variations de ta fonction $f$

    Amicalement. jacquot
  • Utiliser le TVI pour démontrer ça c'est sortir le bazooka. Ta deuxième inclusion est effectivement facile, pour la première tu peux chercher à explicitement calculer le t qui permettrait d'exprimer un élément de ton intervalle A comme un élément de B.
  • Merci, corrigé -
    Pour la première inclusion :
    Soit $y \in A$.
    $a \le y \le b$.
    Si $a=b$, alors $A = B = \{0\}$.
    Supposons $a \neq b$, on a alors :
    $0 \le \frac{y-a}{b-a} \le 1$.
    Soit $t = \frac{y-a}{b-a}$.
    $t \in [0,1]$ et $y=(1-t)a + bt$, donc $y \in B$.
    Finalement $A \subset B$.
Connectez-vous ou Inscrivez-vous pour répondre.