Pensez à lire la Charte avant de poster !

$\newcommand{\K}{\mathbf K}$


Les-Mathematiques.net - Cours de mathématiques supérieures
 Les-Mathematiques.net - Cours de mathématiques universitaires - Forum - Cours à télécharger

A lire
Deug/Prépa
Licence
Agrégation
A télécharger
Télécharger
277 personne(s) sur le site en ce moment
E. Cartan
A lire
Articles
Math/Infos
Récréation
A télécharger
Télécharger
Théorème de Cantor-Bernstein
Théo. Sylow
Théo. Ascoli
Théo. Baire
Loi forte grd nbre
Nains magiques
 
 
 
 
 

Une équation

Envoyé par kolotoko 
Une équation
il y a deux mois
Bonjour,

Un petit exercice pour nos élèves :

soient N(x) = x + f(1+x2) et D(x) = 1 + f(1 +x2) où f est la fonction " racine carrée " .

Résoudre N(x)/D(x) = 2 .

Bien cordialement.

kolotoko
Re: Une équation
le mois dernier
Bonjour,

il est probable que l'élève bien intentionné commencera par écrire N(x) = 2D(x) soit ensuite x + f(1+x2) = 2 + 2f(1+x2), non ?

Bien cordialement.

kolotoko
Re: Une équation
le mois dernier
La question est posée pour des élèves de quel niveau ?
Re: Une équation
le mois dernier
Bonjour ,

fin de collège ou début de lycée.

Bien cordialement.

kolotoko
Re: Une équation
le mois dernier
En tout cas c'est ce par quoi moi je commencerais.
De toutes façons, tous les chemins mènent à Rome dans ce genre d'exos.



Edité 2 fois. La dernière correction date de le mois dernier et a été effectuée par Superkarl.
Re: Une équation
le mois dernier
avatar
Citation
Kolotoko
fin de collège ou début de lycée

Je conjecture que @Kolotoko vit en Afrique francophone.
En France, cette équation est inaccessible à 90% des élèves de cette terminale que certains osent encore qualifier de "scientifique".....


What’s the most you ever lost on a coin toss ?




Edité 1 fois. La dernière correction date de le mois dernier et a été effectuée par Ramon Mercader.
Re: Une équation
le mois dernier
En fait je ne comprends pas trop la question que tu poses: comment un élève va rédiger ? quelles sont les résolutions possibles ? à quoi faut-il faire attention (division par zéro) ?

@Ramon: si ce que tu dis est vrai, c'est effrayant.



Edité 2 fois. La dernière correction date de le mois dernier et a été effectuée par Polka.
Re: Une équation
le mois dernier
avatar
Si on prend une ligne pour demander aux élèves de prouver d'abord, que $\forall x\in \R,\ x < \sqrt{1+x^2}$, j'ose espérer que les élèves de Terminale voire même bien avant sauraient démontrer que : \[\forall x \in\R, \quad N(x)=x+\sqrt{1+x^2}<2\sqrt{1+x^2}<2D(x)\] et conclure qu'il n'y a donc aucune solution.

Je suis bien d'accord que la manipulation d'inégalités est loin d'être maîtrisée même par les élèves qui s'orientent en classes préparatoires mais je me plais à croire que les élèves ne sont pas nuls au point de voir cela !

Par ailleurs, ils ont des calculatrices graphiques et sont parfaitement capables de voir que la fonction $f:x\mapsto \dfrac{x+\sqrt{1+x^2}}{1+\sqrt{1+x^2}}$ n'atteint jamais la valeur 2. Partant de là, il devient beaucoup plus rassurant de ne pas trouver de solution.



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par AD.
Re: Une équation
le mois dernier
avatar
Il conviendrait peut-être de commencer par déterminer l'ensemble sur lequel cette équation est définie.....(même si cela est évident)

@Bisam:
Les élèves de terminale capables de faire le raisonnement simple que tu nous proposes n'existent qu'à l'état de traces, comme on dit en chimie.....

Les élèves actuels ne sont pas plus idiots que leurs lointains prédécesseurs mais les programmes sont tellement vides qu'ils n'apprennent plus rien.....Certains diraient que ces équations ne sont que des vieilleries....

On préfère exercer les élèves à pianoter sur un clavier de calculatrice.....DIST NORM NCD,DIST NORM NCD, DIST NORM NCD,DIST NORM NCD, DIST NORM NCD,DIST NORM NCD.......voilà qui est moderne au XXIème siècle....


What’s the most you ever lost on a coin toss ?




Edité 5 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.
Dom
Re: Une équation
le mois dernier
C’est simple : les dernières modifications des programmes font qu’au collège il n’y a plus de manipulations d’inégalités.
Les dernières bribes qu’il restait relevaient de résoudre des inéquations du premier degré à une inconnue (sans spécificité technique, genre ax+b<cx+d, pas beaucoup plus dur...). Le cœur de la leçon (ne riez pas !) était le fait de changer le sens quand on multiplie ou divise par un nombre strictement négatif.

Ainsi, c’est plutôt milieu de 2nde et on sait quand fin de 2nde très peu parviendront à faire ça.

Remarque : il n’y a plus non plus d’exercices traitant des racines carrées car « on arrivait pas à les faire faire à tous les élèves » (je cite un inspecteur, cela dit, pas si critiquable que cela par ailleurs).
Re: Une équation
le mois dernier
Je ne comprends pas ce ''pas si critiquable d'ailleurs''. Si tous les élèves n'arrivent pas à manipuler correctement les racines carrées alors il n'est pas anormal de zapper ce chapitre?
Dom
Re: Une équation
le mois dernier
Je veux dire que sur plein d’autres sujets il ne disait pas n’importe quoi de mon point de vue.

Sur ce sujet précis je lui ai dit qu’il ne s’inquiète pas. Que dans des bahuts qui fonctionnent les élèves voient tous ces exercices sur les racines carrées mais pas dans les zones difficiles puisque maintenant c’est sorti des programmes. Et que ça renforçait nécessairement les inégalités et le déterminisme social. Il n’a pas dit mot et n’a fait qu’acquiescer en ayant l’air de dire « vous avez raison, nous deux le savons mais moi je n’ai pas le droit de le dire ». C’est mon interprétation.
Re: Une équation
le mois dernier
@Dom
Ok merci pour l'éclaircissement.smiling smiley
Re: Une équation
le mois dernier
avatar
Citation
Dom
vous avez raison, nous deux le savons mais moi je n’ai pas le droit de le dire


— Puisqu’ils savent que nous savons qu’ils savent que nous savons, nous pourrions…
— Ouvrir une savonnerie.
— Une savonnerie, excellence ?
— Avec tous vos savons, ça doit être facile.
— Ahaha, c’est la meilleure de la république !


What’s the most you ever lost on a coin toss ?




Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.
Re: Une équation
le mois dernier
avatar
Résoudre l'équation $\; \dfrac{x+\sqrt{1+x^2}}{1+\sqrt{1+x^2}}=2 $

$\forall x \in\R\;\; 1+x^2>0\;$ donc$\; \sqrt{1+x^2}\;$ est bien défini pour tout $\; x \in \R .$

De plus:

$\forall x \in\R\;\; \sqrt{1+x^2}\geq 1$

$\forall x \in\R\;\; 1+\sqrt{1+x^2}\geq 2$

$\forall x \in\R\;\; 1+\sqrt{1+x^2}\neq 0$

Le domaine de définition de cette équation est donc $\R.$

$\dfrac{x+\sqrt{1+x^2}}{1+\sqrt{1+x^2}}=2 $

$x+\sqrt{1+x^2}=2+2\sqrt{1+x^2}$

$\sqrt{1+x^2}=x-2$

$(\sqrt{1+x^2}\;)^2=(x-2)^2\;$ à condition que $x-2\geq 0\;$ c'est-à-dire $\;x \in [2,+\infty[\;$

$1+x^2=x^2-4x+4$

$4x=3$

$x=\dfrac{3}{4}$

Mais $\dfrac{3}{4} \notin [2,+\infty[$

L'équation n'admet donc aucune solution.

Evidemment, c'est moins subtil que ce que propose @Bisam, mais cela reste néanmoins hors de portée de beaucoup d'élèves de terminale....
Proposez cette équation le jour du Bac et c'est le carnage assuré !!!!!
Si @Kolotoko veut proposer cet exercice à un élève de fin de troisième ou début de seconde et qu'il ne vit pas en Afrique francophone, il n y a qu'une seule possibilité: il a emprunté la DeLorean de Doc Emmet Brown et nous arrive tout droit de l'année 1973....
NOM DE ZEUS !!!!



What’s the most you ever lost on a coin toss ?




Edité 4 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.


Re: Une équation
le mois dernier
Bonsoir,

joli calcul et amusante conclusion.

Bien cordialement.

kolotoko
Re: Une équation
le mois dernier
Jolie rédaction, @RM, effectivement.

Un raisonnement via analyse-synthèse serait-il possible ici à partir de l'étape $\sqrt{1+x^2}=x-2$ ?
Du type: supposons que x soit solution de $\sqrt{1+x^2}=x-2$ donc $1+x^2=(x-2)^2$ et ensuite vérification que $x=\frac 3 4$ ne vérifie pas l'équation de départ.

Cordialement,

alan20
Dom
Re: Une équation
le mois dernier
Pour ma part, j'ai presque un tout petit reproche sur la rédaction de Ramon Mercader.

Faut-il lire les successions d'équations placées les unes en dessous des autres comme des "donc" ou comme des "ces équations sont équivalentes" (c'est-à-dire qui ont les mêmes solutions) ?

C'est l'éternel problème de la rédaction lorsque l'on résout une équation.
Chaque professeur a dû réfléchir à ça (non ?).

Ainsi, pour faire référence à l'analyse synthèse, je trouve intéressant dans ce cas précis de n'écrire que des "donc"
(l'étape clé passe de $a=b$ à "donc" $a²=b²$ sans problème) puis de tester la solution trouvée pour voir qu'elle ne convient pas.

Remarque : on a enfin affaire à un bel exemple !

Édit : pardon alan20 j’ai répété ce que tu as dit.
Je vais tout de même un peu plus loin : je pense qu’il faut faire l’analyse dès le départ et ne pas se dire « tiens, arrivé ici, je vais raisonner avec des donc ».



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Dom.
Re: Une équation
le mois dernier
C'est mal rédigé, le "domaine de définition d'une équation" ça ne veut rien dire, il manque des quantificateurs (le $x$ après "est donc $\R$" n'est pas défini), il n'y a pas de connecteurs logiques entre les différentes lignes de calcul, etc. Un élève qui rédige comme ça dans le supérieur ne devrait pas avoir tous les points.

Ca confirme ce que je pensais, Ramon l'ouvre beaucoup sur l'incompétence, mais comme souvent, plus on gueule, moins on est compétent.



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Héhéhé.
Re: Une équation
le mois dernier
avatar
Mal lu la donnée...



Edité 2 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par soland.
Re: Une équation
le mois dernier
avatar
Citation
Héhéhé
Un élève qui rédige comme ça dans le supérieur ne devrait pas avoir tous les points.

@Kolotoko voulait proposer cet exercice à des élèves de fin de 3ème ou de début de seconde....

Citation
Héhéhé
Ramon l'ouvre beaucoup sur l'incompétence, mais comme souvent, plus on gueule, moins on est compétent.

Dans ce cas, tu vas peut-être pouvoir m'expliquer pourquoi un jury a pris le risque de m'attribuer l'agrégation externe en 1995....

Citation
Héhéhé
Un élève qui rédige comme ça dans le supérieur ne devrait pas avoir tous les points.

Des mathématiciens de renommée mondiale dont j'ai pu suivre les cours ne rédigeaient pas nécessairement de façon exemplaire....
Je n'ai jamais eu la prétention de rédiger ce message de façon irréprochable....
En résolvant cette équation, mon but n'était pas de rédiger de façon intégriste mais de montrer qu'une équation aussi simple était hors de portée de l'écrasante majorité des futurs bacheliers S....

Je gueule peut-être mais contrairement à certains donneurs de leçons, je ne suis pas hargneux....manifestement @Héhéhé ne m'apprécie pas beaucoup mais cela m'indiffère au plus haut point....
Comme disait le regretté Maurice Pialat: "Si vous ne m'aimez pas, je ne vous aime pas non plus".....
[www.youtube.com]


What’s the most you ever lost on a coin toss ?




Edité 3 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.
Re: Une équation
le mois dernier
Je trouve ça juste ironiquement délicieux qu'une personne qui passe son temps à déverser sa haine de l'enseignement des maths ne soit pas capable de rédiger correctement la résolution d'une équation de niveau lycée, c'est tout spinning smiley sticking its tongue out
Re: Une équation
le mois dernier
avatar
Heureusement que certains rédigent de façon irréprochable.....comme le montrent ces messages:

[www.les-mathematiques.net]

[www.les-mathematiques.net]


What’s the most you ever lost on a coin toss ?




Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.
Dom
Re: Une équation
le mois dernier
Dites-donc ! Cessez vos enfantillages.


Il n’y a que moi qui en ai le droit.
JLT
Re: Une équation
le mois dernier
avatar
On fait le changement de variables $x=\mathrm{sh}\,(t)$. On a $N(x)=e^t$ et $D(x)=1+\mathrm{ch}\,(t)$. Si $N(x)/D(x)=2$ alors $e^t=2+2\mathrm{ch}\,(t)=2+e^t+e^{-t}>e^t$, ce qui est impossible.
Re: Une équation
le mois dernier
avatar
Citation
Dom
Dites-donc ! Cessez vos enfantillages.

Ce n'est pas moi qui ai commencé.....
Tu as formulé des critiques pertinentes sur ma rédaction mais sans hargne et de façon courtoise comme il sied à des gentlemen...
On ne peut pas en dire autant de tout le monde.....

Ce n'est pas faire offense à l'immense @JLT que de dire que la rédaction mathématique de son message juste au dessus n'est pas exempte de reproches....doit-on en conclure qu'il est incompétent ????


What’s the most you ever lost on a coin toss ?




Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.
Re: Une équation
le mois dernier
Quelques remarques.

D'abord, ne serait-ce pas la première contribution mathématique de notre cher Ramon, qui jusqu'ici se contentait de critiques de notre système d'enseignement ? Par parenthèse, désaccord total avec Héhéhé, je ne vois pas la moindre « haine » dans les interventions de Ramon, juste une critique légitime de la déchéance inacceptable de notre système d'enseignement, ou de ce qui en reste. On voit bien ici le genre de dérive à quoi conduira la loi Avia sur l'interdiction des dits « contenus haineux » qu'on pourra détecter n'importe où, pour faire taire au lieu de répondre.

Ensuite, comme d'autres, je ne suis pas d'accord avec sa rédaction. On dirait ces interminables pensums de logiciens, avec juste des signes - encore que ceux-ci soient intelligibles, eux. Il faut rédiger en français, en indiquant en français les liens logiques entre les lignes de calcul, ici des équivalences. Et peut-être moins délayer.

Mais contrairement à Héhéhé, je pense qu'il est très légitime de parler du « domaine de définition » d'une équation : c'est l'ensemble des $x$ pour lesquels l'équation a un sens.

Et enfin, à JLT, bravo, l'artiste !

Bonne soirée.
Fr. Ch.
Re: Une équation
le mois dernier
Pas besoin d'équivalents dans le raisonnement de Ramon qui dit essentiellement que si $x$ est solution, alors $x\geq 2$ et $x=\dfrac 3 4$ donc il n'y a pas de solution.
Re: Une équation
le mois dernier
Et voici la référence des « savons » de Ramon. Excellente BD de ligne claire.


Re: Une équation
le mois dernier
avatar
Citation

je ne vois pas la moindre « haine » dans les interventions de Ramon

Il y a des jours où il est un peu soupe au lait quand même. C'est un euphémisme. Il a souvent du mal avec l'humour même quand il est plus qu'évident. J'en ai fait les frais. winking smiley (Bon il y a aussi des jours où il me fait marrer.)

[www.les-mathematiques.net]

[www.les-mathematiques.net]
Re: Une équation
le mois dernier
avatar
@Zeitnot,

Je me suis emporté un peu vite à ton égard ce jour là et je m'en excuse....mais il y a tellement de profs de maths qui trouvent formidable d'enseigner DIST NORM NCD que parfois, on ne sait plus vraiment à qui on a affaire....


What’s the most you ever lost on a coin toss ?
Re: Une équation
le mois dernier
avatar
Merci. C'est complétement oublié alors. (Je dois avoir le défaut d'être rancunier...). winking smiley
Re: Une équation
le mois dernier
C'est quoi le domaine de définition de l'équation $2x+1 = 0$ ? $\N$ ? $\Z$ ? $\Q$ ? $\R$ ? $\C$ ? $\Z/3\Z$ ?



Edité 4 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Héhéhé.
Re: Une équation
le mois dernier
Bonjour,

Pour un élève de fin de troisième, on est à priori dans $\mathbb{R}$.

Cordialement,

Rescassol
Dom
Re: Une équation
le mois dernier
Bon je n’ai jamais entendu « domaine de définition d’une équation » mais ce n’est pas choquant dans le sens où c’est une manière de dire dans quel ensemble on travaille.
Re: Une équation
le mois dernier
Alors tu ne peux pas demander de le trouver, ce doit être une donnée du problème.

C'est comme les exercices qui demandent de trouver des ensembles de définition de fonctions, ça n'a pas de sens.

Si je demande: quel est l'ensemble de définition de la fonction
$$ x \longmapsto \sqrt{x+1}$$
et qu'on me répond "l'ensemble des nombres premiers", c'est une réponse qui est acceptable, pourtant ce n'est sans doute pas la réponse attendue.
Dom
Re: Une équation
le mois dernier
Oui oui j’entends bien le problème de fond des domaines de définition de fonctions, c’était là encore une autre manière (fautive) pour dire quelque chose.
Bon ce n’était pas non plus le pire des trucs qu’on puisse voir au lycée. Faut pas pousser.

Présenter chaque lettre est important de mon point de vu et décrire un bon ensemble où elles se baladent est important aussi avant de commencer à « travailler ».
Re: Une équation
le mois dernier
@Héhéhé : Si tu demandes l'ensemble de définition, il n'y en a qu'un non ?
Donc une seule réponse acceptable. grinning smiley



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par gai requin.
Re: Une équation
le mois dernier
Oui c'est bien pour cela que ça n'a pas de sens, ce sont pourtant des questions qu'on trouve dans certains manuels.
Re: Une équation
le mois dernier
Ben c'est dans le cours.
Soit $f$ une fonction de la variable réelle, à valeurs dans $\R$.
Son ensemble de définition est $D_f=\{x\in\R;f(x)\in\R\}$.



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par gai requin.
Re: Une équation
le mois dernier
Moi, ce qui m'étonne, c'est plutôt ça :

Citation
Ramon Mercader
En résolvant cette équation, mon but n'était pas de rédiger de façon intégriste mais de montrer qu'une équation aussi simple était hors de portée de l'écrasante majorité des futurs bacheliers S....

Je ne vois rien qui montre que l'écrasante majorité des futurs bacheliers S seraient incapables de résoudre ce petit exercice.



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Bintje.
Re: Une équation
le mois dernier
C'est le genre de rédaction dont j'aurais aimé avoir une réponse claire et définitive en sortie de Master enseignement et je me rends compte que ce n'est pas le cas. On préfère se concentrer sur les dernières nouveautés des programmes à la mode (algorithmique, lois à densité et statistiques inférentielles, en gros, lorsque j'y étais) ou sur des préoccupations complètement "hors-sol" quand on voit nos élèves actuels.

Le "domaine de définition" d'une équation me paraît assez naturel, c'est comme chercher l'ensemble de définition avant d'étudier une fonction.
Est-ce que c'est indispensable lorsqu'on fait une analyse-synthèse?
En fait je préfère l'analyse-synthèse comme méthode générale car la conservation des équivalence me semble périlleuse car elle demande un certain "flair".

Je me suis aussi posé la question de la rédaction pour une inéquation à racine carrée du coup, du type $2-x<\sqrt{x+5}$.
Je vois bien comment procéder en délimitant les domaines où l'équation à un sens et en procédant par disjonction mais encore une fois cela demande du "flair".
Est-ce qu'une analyse-synthèse est envisageable ici ?

Je sais bien que ces questionnements sont hors de portée pour un élève et ne devraient pas concerner les enseignants du secondaire (ça ne fait pas partie des approfondissement sur le second degré, par exemple, même dans les meilleurs livres, là à mon sens où ça aurait sa place). C'est plutôt pour refaire un peu de maths car quelques années à enseigner en collège font vite mal aux réflexes (même si on en vient à se poser des questions que l'on ne se serait jamais posé avant).

Cordialement.



Edité 1 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par AD.
Re: Une équation
le mois dernier
[mode "vieux con" ON]

On peut reprocher tout ce qu'on veut aux recherches de domaines de définition, mais c'était une formation excellente à la manipulation d'égalités et d'inégalités, une sources d'exercices sur les équations et inéquation (*). Évidemment, il y avait une grande part de sous-entendus (très explicites à l'oral dans les cours), d'habitudes communes entre les profs et les élèves.
Maintenant, on a supprimé tout ça. C'est plus "logique", mais on ne calcule plus.

[mode "vieux con" OFF]

Cordialement.

(*) et bien sûr, ça apprenait à vérifier si les dénominateurs sont non nuls, si possible avant de l'écrire, et si les radicandes sont bien positifs, si possible avant d'écrire la racine carrée.
Re: Une équation
le mois dernier
@gerard0: on peut donner exactement le même exercice, il faut juste tourner l'énoncé différemment pour éviter de parler d'un objet mal défini.

@gai requin: si $f$ est à valeurs réelles, on a $f(x) \in \R$ pour tout $x$ dans l'ensemble de définition de $f$, je ne comprends pas ta définition, j'ai l'impression que ta définition est circulaire.
Dom
Re: Une équation
le mois dernier
Oui, bon, encore une fois, on peut trouver un truc comme :

Pour quelles valeurs réelles de $x$, l'écriture suivante est-elle une représentation d'un nombre réel ?

$$\dfrac{\sqrt{x}}{(x-1)(x²-7)}$$


1) Est-ce que cela conviendrait ?

Est-ce vraiment un problème de maths ce dont on parle, là ?

Je sais qu'il y a eu des débats sur le sujet. Je m'étonne même que ce ne soit plus dans les marronniers.

2) A-t-on le droit de proposer : résoudre dans $\R$, l'équation d'inconnue $x$ : $\dfrac{x-1}{x-1}=1$ ?
Ou est-ce une erreur de l'auteur de ne pas exclure $1$ ?

3) Enfin, j'avais compris que le mot "équation" n'était pas un terme mathématique.

Héhéhé, le débat de cette rédaction proposée par Ramon Mercader n'est pas ici je pense.
C'est mon point de vue.

Edit : je n'avais pas vu quelques messages.
Je suis d'accord avec Gérard.
Le prof dit aux élèves "bon la consigne signifie ... mais en vrai elle n'a pas sens quand on fait des mathématiques".
Et du coup, qu'est-ce ça peut faire une fois ces précautions prises ?
"Je l'écrirai toujours comme ça pour gagner du temps". Hop, j'enfonce le clou.
Cela dit je ne crois pas que ce soit le fait d'enlever cet exercice "trouver le domaine de définition" qui a fait retirer tous les exercices calculatoires dont parle Gérard. On a éventuellement sauté sur l'occasion mais de toute manière, même avant les "fonctions" on a enlevé tous les exercices sur le calcul symbolique (ou calcul littéral, je ne sais jamais ce qu'il est mieux de dire).

Dans tous les cas, une fois la superbe belle consigne trouvée, le prof en viendra à dire "bon, en fait, on vous demande de regarder quand le dénominateur ne s'annule pas et quand le radicande est positif".
Wouaaaaah. Génial... Mais au moins on l'a bien écrit dans le livre et dans le cahier...




Edité 2 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Dom.
Re: Une équation
le mois dernier
avatar
@Bintje,

Presque toutes les étapes de la résolution seraient sources d'énormes erreurs....Demande aux correcteurs du Bac ce qu'ils voient chaque année dans leurs copies....

Quand on sait que certains élèves de TS sont capables d'écrire que la solution de l'équation $\ln x=2\;$ est $\dfrac{2}{\ln}\;$, plus rien ne doit nous étonner....

Sans parler des inepties sur les racines carrées du type $\; \sqrt{a+b}=\sqrt{a}+ \sqrt{b}\;....$ On imagine les catastrophes que cela peut engendrer dans l'équation qui est l'objet de cette discussion....
Mais peut-on reprocher aux élèves de lycée de mal maîtriser ce que l'on a à peine daigné leur enseigner ????


What’s the most you ever lost on a coin toss ?




Edité 3 fois. La derni&egrave;re correction date de le mois dernier et a &eacute;t&eacute; effectu&eacute;e par Ramon Mercader.
Dom
Re: Une équation
le mois dernier
Oui, c'est le passage d'une ligne à une autre qui est du n'importe quoi dans les copies.
Re: Une équation
le mois dernier
@Héhéhé : Est-ce que $f:x\mapsto \ln x$ définit une fonction de la variable réelle à valeurs dans $\R$.
J'ai envie de dire oui.
Re: Une équation
le mois dernier
Ramon, je sais bien que beaucoup d'élèves ont de grosses lacunes en calcul (manipulation d'inégalités, de racines carrées, etc.). Mais, je ne crois pas que ce petit exercice soit inaccessible à 90% des TS, comme tu l'écrivais.

En tout cas, ta solution ne "montre" pas ton affirmation.
Re: Une équation
le mois dernier
avatar
@Bintje,

Un prof de TS perçoit immédiatement les erreurs que ses élèves pourraient commettre à chaque ligne de la résolution de l'équation....


What’s the most you ever lost on a coin toss ?
Seuls les utilisateurs enregistrés peuvent poster des messages dans ce forum.

Cliquer ici pour vous connecter

Liste des forums - Statistiques du forum

Total
Discussions: 143 247, Messages: 1 414 334, Utilisateurs: 26 477.
Notre dernier utilisateur inscrit ponyo.


Ce forum
Discussions: 2 541, Messages: 51 159.

 

 
©Emmanuel Vieillard Baron 01-01-2001
Adresse Mail:

Inscription
Désinscription

Actuellement 16057 abonnés
Qu'est-ce que c'est ?
Taper le mot à rechercher

Mode d'emploi
En vrac

Faites connaître Les-Mathematiques.net à un ami
Curiosités
Participer
Latex et autres....
Collaborateurs
Forum

Nous contacter

Le vote Linux

WWW IMS
Cut the knot
Mac Tutor History...
Number, constant,...
Plouffe's inverter
The Prime page