Galois group

Good evening,

I am new here in France, i can not speack Fransh well, so i will post my question in english, and i will be greatful if you could help me,

Please help me to answer question c) of the following problem:


Let $F=\mathbb{F}_3(t)$.
Let $f(x)=x^6+x^4+x^2-t\in F[x]$. You may assume that $f(x)$ is irreducible in $F[x]$. Let $E$ be splitting field of $f(x)$ over $F$.

a) Show that $f(x)=f(-x)$ and $f(x+1)=f(x)$

b) Determine $Gal(E/F)$ Hint: why is part a) there?

c) For each non trivial $H< \text{Gal}(E/F)$ determine $\text{Fix}(H)$. Express the answer in form of $F(\beta)$ whith the minimal polynomial of $\beta$ over $F$ specified.

I proved $a)$ For $b)$, this is what i wrote:


Part (a) has the consequence that, if $r$ is a root of $f$ in an extension field, also $r+1$, $r+2$, $-r$, $-r+1$ and $-r+2$ are roots.

We note also that these are pairwise distinct:

* $r\ne r+1$, $r\ne r+2$, $r\ne -r$, $r\ne -r+1$, $r\ne -r+2$;
* $r+1\ne r+2$, $r+1\ne -r$, $r+1\ne -r+1$, $r+1\ne -r+2$;
* $r+2\ne -r$, $r+2\ne -r+1$, $r+2\ne -r+2$;
* $-r\ne -r+1$, $-r\ne -r+2$;
* $-r+1\ne -r+2$.
From that, all the roots are contained in $F(r)$, thus $E=F(r)$, so $[E:F]=[F(r):F]=6$, so $Gal(E/F)$ has order $6$. As $Gal(E/F)$ acts transitively on the roots (due to the irreducibility of f), there are $\sigma, \tau \in Gal(E/F)$, such that $\sigma(r)=r+1$ and $\tau(r)=-r$.

Then we have $\sigma(\tau(r))=\sigma(-r)=-\sigma(r)=-r-1$ and $\tau(\sigma(r))=\tau(r+1)=\tau(r)+1=-r+1$ As $-1 \neq 1$, we see that $\sigma$ and $\tau$ don't commute. Thus $Gal(E/F)$ is non-Abelian and has order $6$, thus $Gal(E/F)=S_3$.

Thanks

Réponses

  • Bonsoir Siwar.
    Nous sommes ici sur un forum de langue française.
    Ouvre une nouvelle discussion et prends le temps de traduire ton message en français.
    Alternativement, poste ton message sur un forum anglophone, par exemple https://math.stackexchange.com/
    Merci, j'espère à bientôt.
    AD
Cette discussion a été fermée.