Pensez à lire la Charte avant de poster !

$\newcommand{\K}{\mathbf K}$


Les-Mathematiques.net - Cours de mathématiques supérieures
 Les-Mathematiques.net - Cours de mathématiques universitaires - Forum - Cours à télécharger

A lire
Deug/Prépa
Licence
Agrégation
A télécharger
Télécharger
248 personne(s) sur le site en ce moment
E. Cartan
A lire
Articles
Math/Infos
Récréation
A télécharger
Télécharger
Théorème de Cantor-Bernstein
Théo. Sylow
Théo. Ascoli
Théo. Baire
Loi forte grd nbre
Nains magiques
 
 
 
 
 

Racine carrée d'une matrice définie positive

Envoyé par André49 
Racine carrée d'une matrice définie positive
le mois dernier
Bonjour,

J’ai un souci pour l’unicité dans le résultat suivant :

Pour toute matrice $M$ définie positive (réelle), il existe une unique matrice définie positive $R$ vérifiant $M=R^{T} R=R^2$ ($R$ étant alors appelée « racine carrée » de $M$).

Je sais que $M$ étant symétrique réelle, on peut l’écrire $M=O D O^{-1}$, avec $O$ orthogonale ($O^{-1}=O^T$). Et donc, il n’est pas très compliqué de montrer que $R = O D^{1/2} O^{-1}$ est une matrice qui convient. Mais le fait qu’elle soit unique … ?

Je ne comprends pas bien l’indication (que j’ai rencontrée) d'utiliser une propriété des matrices commutantes.

Par exemple, soit $A$ une autre matrice définie positive telle que $A^{T} A=A^2=M$. Il est évident que $A$ et $M$ commutent puisque $A^3=A^2 A= MA = A A^2 = AM$.

Or, un résultat (de « diagonalisation simultanée ») dit que si $A$ et $M$ commutent et sont diagonalisables (ce qui est le cas ici), alors elles sont simultanément diagonalisables, c’est-à-dire qu’il existe une même matrice $P$ telle que $A=P \Delta P^{-1}$ et $M=P D P^{-1}$.

OK, par suite, du fait que $A^2=M$ on déduit que $\Delta = D^{1/2}$ ; mais je me retrouve donc avec $A= P D^{1/2} P^{-1}$ et non pas $A = O D^{1/2} O^{-1}$ ($=R$)... Je peux juste dire que $A$ et $R$ ayant les mêmes valeurs propres, elles sont semblables.

Donc, je rate un truc sans doute élémentaire dans la démo, mais je ne vois pas quoi…
Re: Racine carrée d'une matrice définie positive
le mois dernier
Il vaut mieux (à mon sens) utiliser un résultat intermédiaire : si $A$ et $M$ commutent, alors les espaces propres de $M$ sont stables par $A$.

Ainsi, si tu écris ton espace comme $\bigoplus_\lambda E_\lambda$ (où $E_\lambda$ est l'espace propre de $M$ associé à la valeur propre $\lambda$), chaque $E_\lambda$ est stable par $A$; en particulier $A$ y est une racine carrée symétrique définie positive de $M_{\mid E_\lambda} = \lambda id_{E_\lambda}$. Y en a-t-il beaucoup ?

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell



Edité 1 fois. La dernière correction date de le mois dernier et a été effectuée par Maxtimax.
Re: Racine carrée d'une matrice définie positive
le mois dernier
avatar
Soit $M$ un matrice semi-définie positif, $A$ tel que $A^2=M=R^2$, soit $R=V^*D_R^{\frac{1}{2}}V$ je suppose que tous les valeurs propres de $ M$ sont distincts, alors ça revient à dire $U^*D_AU=V^*D_RV=M$, $U$ et $V$ unitaires, $D_{}$ sont les diagonales des v. propres de $M$ à permutation prés. Tu multiplies et tu arrives à $P^TVU^*D_AUV^*P=D_A$, mais tous les elements de $D_A$ sont distincts donc $P^TVU^*=d$, $d$ diagonale donc $V=PdU$ et tu déduis par continuité.

C'est bon.



Edité 1 fois. La dernière correction date de le mois dernier et a été effectuée par Tonm.
Re: Racine carrée d'une matrice définie positive
le mois dernier
Bonjour Maxtimax,

Je te remercie, mais n'ayant pas bossé tout le cours de MP (ceci explique, j'espère, cela) j'avoue n'avoir rien compris à ta démonstration.
Re: Racine carrée d'une matrice définie positive
le mois dernier
André : ah oui effectivement; je suis désolé j'ai fait comme si tu avais suivi ce cours (question d'habitude)
Qu'à cela ne tienne, je vais développer :
L'espace propre associé à une valeur propre $\lambda$ c'est les $X$ tels que $MX = \lambda X$. En particulier le fait que $M$ soit diagonalisable (par le théorème spectral donc) revient à dire que $\R^n = \bigoplus_\lambda E_\lambda$ où $E_\lambda$ est ledit espace propre.

Maintenant si $A$ et $M$ commutent et si $MX=\lambda X$, alors $MAX = AMX = \lambda AX$. Donc $X\in E_\lambda \implies AX\in E_\lambda$, i.e. $E_\lambda$ est stable par $A$ (tu remarqueras qu'évidemment $E_\lambda$ est stable par $M$ !)

On peut donc regarder les endomorphismes $A,M$ restreints à $E_\lambda$. $M$ restreint à $E_\lambda$ c'est très facile puisque par définition si $X\in E_\lambda$, alors $MX= \lambda X$, donc la restriction de $M$ à $E_\lambda$ est $\lambda id_{E_\lambda}$. Maintenant si $X\in E_\lambda$, $A^2X= MX = \lambda X$, donc $A$ restreint à $E_\lambda$ est une racine carrée de $\lambda id_{E_\lambda}$. Mais $A$ est aussi un endomorphisme symétrique défini positif sur cet espace (puisque ça ne dépend que du produit scalaire )

Maintenant on peut donc appliquer la théorème spectral à ce sous-espace $E_\lambda$ et obtenir $PAP^{-1} = D$, $D$ une diagonale. Mais en mettant au carré on obtient $\lambda Id$. ça restreint beaucoup les valeurs que $A$ peut prendre sur $E_\lambda$, non ?
Maintenant comme $\R^n = \bigoplus_\lambda E_\lambda$ et que $A$ est unique sur chaque $E_\lambda$, $A$ est unique sur $\R^n$.

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell
Re: Racine carrée d'une matrice définie positive
le mois dernier
Bonjour Maxtimax,

Je pense que je comprends assez bien la logique de ta démonstration passant par les sous-espaces, bien que je ne sois pas à l'aise avec la manipulation des restrictions de matrices à des sous-espaces... Mais, admettons que je sois à l'aise ; il y a quand même un point qui ne me paraît pas clair :

Tu dis : "$A$ restreint à $E_\lambda$ est une racine carrée de $\lambda id_{E_\lambda}$"

Je comprends que si $a$ désigne l'endomorphisme associé à $A$ et $a_{E_\lambda}$, la restriction de $a$ au sous-espace $E_\lambda$, alors, il existe un base $B_\lambda$ de vecteurs propres de $E_\lambda$ dans laquelle $a_{E_\lambda}$ est diagonalisable par une matrice $D_\lambda$ qui comporte (ou qui est constituée de, je ne sais pas ce qu'il en est réellement... comme j'ai dit, je ne suis pas à l'aise avec ça) le bloc :
$$\begin{pmatrix} \sqrt{\lambda} & & [0] \\ & \ddots & \\ [0] & & \sqrt{\lambda} \end{pmatrix}$$
Si c'est bon jusqu'à présent, il me semble qu'on peut dire qu'en généralisant à tous les sous-espaces, en considérant $\mathbb{R}^n=\bigoplus E_\lambda$, et en prenant la base $B=\bigcup B_\lambda$, on devrait conclure que $A$ se diagonalise par une matrice $D$ qui comporte tous les $\sqrt{\lambda}$ en diagonale.

Mais je ne vois pas le lien avec ta phrase : "$A$ est unique sur $E_\lambda$" ; tout ce qu'il me semble pouvoir être dit, c'est que $A$ se diagonalise sur $E_\lambda$ (par $D_\lambda$, justement).

Car supposons maintenant que j'imagine qu'il existe une autre matrice $B$, définie positive, telle que $B^2=M$ ; si j'applique ton même raisonnement à $B$, je vais aboutir à la même conclusion que $B$ se diagonalise sur $E_\lambda$ (par $D_\lambda$, justement) ; et ensuite que $B$ se diagonalise par une matrice $D$ qui comporte les $\sqrt{\lambda}$ en diagonale. Mais qu'est-ce qui me prouve que $B=A$ ?

Comme tu conclus bien que "$A$ est unique", il y a manifestement quelque chose que je n'ai toujours pas compris. Je ne sais si mes explications ont été claires...
Re: Racine carrée d'une matrice définie positive
le mois dernier
Oui tes explications sont claires, pas de souci !
Ce qui impose l'unicité de $A$ restreinte à $E_\lambda$ c'est que $A$ restreinte à $E_\lambda$ est une homothétie dans une certaine base ($B_\lambda$). Mais être une homothétie sur une base, c'est pareil que sur tout l'espace ! Donc $A$ restreinte à $E_\lambda$ est égale (vraiment égale !!) à $\sqrt \lambda id_{E_\lambda}$

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell
Re: Racine carrée d'une matrice définie positive
le mois dernier
D'accord, je médite tout ça...

Ceci dit, juste pour info, j'ai imaginé un autre moyen qui se dispense des sous-espaces, mais la conclusion manque. Je le soumets tout de même (c'est peut être génial...) :

Je reprends (pour clarté) les notations : $M$ est une matrice définie positive réelle et je veux montrer qu'il n'y a qu'$1$ matrice définie positive réelle $A$ qui vérifie $A^{T}A=A^2=M$.

Je laisse tomber le fait qu'on peut facilement en exhiber une et je m'intéresse à l'unicité. Je suppose donc qu'il y en a $2$ : $A$ et $B$. Comme $A$ commute avec $M$, il existe une même matrice $P$ telle que $A=P \Delta_A P^{-1}$ et $M=P D P^{-1}$. Comme $B$ commute avec $M$, il existe une même matrice $Q$ telle que $B=Q \Delta_B Q^{-1}$ et $M=Q D Q^{-1}$. De $A^2=M$, on déduit que $\Delta_A^2=D$ et donc $\Delta_A=D^{1/2}$ et donc $A= P D^{1/2} P^{-1}$. De $B^2=M$, on déduit que $\Delta_B^2=D$ et donc $\Delta_B=D^{1/2}$ et donc $B= Q D^{1/2} Q^{-1}$.

Ensuite, puisque par hypothèse, $P D P^{-1}=Q D Q^{-1}$, ne peut-on pas facilement en déduire que $P D^{1/2} P^{-1}=Q D^{1/2} Q^{-1}$ ??? Ce qui montrerait que $A=B$, youpi !

Plus sérieusement, c'est une bonne piste, ou est-ce que je m'égare ? (merci par avance de ta patience).
Re: Racine carrée d'une matrice définie positive
le mois dernier
facilement, facilement.. ça dépend de ce que tu considères facile grinning smiley à nouveau, avec les espaces propres effectivement on peut le déduire très simplement, mais si tu n'es pas à l'aise avec c'est plus compliqué, et je ne vois pas de manière immédiate de le faire (mais peut-être que c'est parce que je pense beaucoup en termes d'endomorphismes et peu en termes de matrices)

Si tu veux, voilà une autre approche, plus matricielle :


Soit $R$ un polynôme d'interpolation qui vaut $\sqrt \lambda_i$ en $\lambda_i$, pour toutes les valeurs propres $\lambda_i$ de $M$.

Soit $P$ telle que $PMP^{-1}, PAP^{-1}$ sont diagonales, avec les valeurs propres mises dans "le bon ordre", c'est-à-dire quelque chose comme $\lambda_1 \leq \lambda_1 \leq ... \leq \lambda_k$ (tu mets $\lambda_1$ autant de fois qu'il y en a, puis $\lambda_2$ pareil etc. ), et pour $A$ tu auras alors $\sqrt{\lambda_1}\leq \sqrt \lambda_1 \leq ...\leq \sqrt \lambda_n$. J'appelle ces deux matrices diagonales $D$ et $D^{1/2}$ avec tes notations.

Alors tu vérifies facilement que $R(D) = D^{1/2}$ : un polynôme appliqué à une matrice diagonale, ça fait juste le polynôme sur chacune des entrées diagonales. En exprimant ça en fonction de $M$ et $A$ : $R(PMP^{-1}) = PAP^{-1}$. Maintenant on vérifie facilement que $R(PMP^{-1}) = PR(M)P^{-1}$, donc $PR(M)P^{-1} = PAP^{-1}$, donc $R(M) =A$.

Mais AH ! magie, $R$ ne dépendait pas du tout de $P$ ni de $A$, il dépendait juste de $M$. Et je viens de prouver que $R(M) = A$. Donc on a unicité.

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell



Edité 1 fois. La dernière correction date de le mois dernier et a été effectuée par Maxtimax.
Re: Racine carrée d'une matrice définie positive
le mois dernier
Et bien, c'est plutôt ça qui est génial. Cette fois-ci, j'ai tout compris. Si je veux pinailler, je peux dire que $R(M)=A$, puis que $R(M)=B$, donc $A=B$, n'est-ce pas ?

Juste ceci : "$P^{-1}MP$ est diagonale" ; ce ne serait pas plutôt $PMP^{-1}$ ? (vu qu'on part de $M=P D P^{-1}$ ; remarque, ça ne change rien)

"polynôme d'interpolation" : n'importe lequel ?
Re: Racine carrée d'une matrice définie positive
le mois dernier
Oui, tu peux pinailler ainsi si ça t'amuse winking smiley

Je ne crois pas avoir écrit que $P^{-1}MP$ était diagonale, mais de toute façon que ce soit $P$ ou $P^{-1}$ l'argument est le même.

Oui, n'importe lequel. Tu peux en prendre un spécifique si ça t'amuse, mais la preuve convient avec n'importe quel $R$ qui vérifie $R(\lambda_i) =\sqrt \lambda_i$

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell
Re: Racine carrée d'une matrice définie positive
le mois dernier
Bien, merci beaucoup ! Je vois que j'ai inversé $P^{-1}MP$ et $PMP^{-1}$ ; je fatigue... j'arrête les maths pour ce soir !
Re: Racine carrée d'une matrice définie positive
le mois dernier
Il existe une astuce économique pour établir l'unicité : si $M$ est sym. positive, on en désigne les valeurs propres par $\lambda_1,;;;, \lambda_k$ (sans les répéter) et ensuite on désigne par $\mu_1,..., \mu_k$ les racines positives de ces réels, on appelle $P$ le polynôme de degré $\leqslant k-1$ qui envoie les $\mu_i$ sur les $\lambda_i$ respectivement ; alors, si $A$ est symétrique positive et si $A^2=M$, on a $A=P(M)$.

j__j
Re: Racine carrée d'une matrice définie positive
le mois dernier
john_john : oui, c'est d'ailleurs la solution que j'ai proposée 4 messages plus haut

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell
Re: Racine carrée d'une matrice définie positive
le mois dernier
Maxtimax : ah ben oui, pardon, j'ai dû louper ton message dans le séquence !
Re: Racine carrée d'une matrice définie positive
il y a sept semaines
j_j : pas de souci, tu as eu raison de proposer une solution en apparence plus simple que la première que j'avais mise winking smiley

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty"-Russell
Seuls les utilisateurs enregistrés peuvent poster des messages dans ce forum.

Cliquer ici pour vous connecter

Liste des forums - Statistiques du forum

Total
Discussions: 136 655, Messages: 1 321 396, Utilisateurs: 24 147.
Notre dernier utilisateur inscrit Topos.


Ce forum
Discussions: 17 181, Messages: 166 661.

 

 
©Emmanuel Vieillard Baron 01-01-2001
Adresse Mail:

Inscription
Désinscription

Actuellement 16057 abonnés
Qu'est-ce que c'est ?
Taper le mot à rechercher

Mode d'emploi
En vrac

Faites connaître Les-Mathematiques.net à un ami
Curiosités
Participer
Latex et autres....
Collaborateurs
Forum

Nous contacter

Le vote Linux

WWW IMS
Cut the knot
Mac Tutor History...
Number, constant,...
Plouffe's inverter
The Prime page