Changement de variable

SVP, ça peut être une question bête.

J'ai une fonction de classe $C^{1}$ et intégrable sur $\mathbb R$. Je cherche la valeur de cette intégrale $\int^{\infty}_{-\infty} |f(\alpha t)| dt$ en fonction de $\int^{\infty}_{-\infty} |f( t)| dt$ avec $\alpha$ un complexe.
Merci.

Réponses

  • Bonjour,

    Aucun espoir d'une relation quelconque, même pour des fonctions simples (sauf bien sûr si $\alpha$ est réel).
  • Bonjour @YvesM, comme contre exemple $\int_{R}\exp(-it^{2})dt$ existe, cependant avec le changement de variable $t=\exp(i \pi/4)s$ il le rend divergent formellement si on fait comme dans $R$
  • Qu'on soit bien d'accord : la fonction s'appelle $f$, est définie sur $\R$ et à valeurs dans $\C$ ?
    J'espère avoir tort...
  • C'est bizarre de calculer $f(\alpha t)$ si $f$ est définie sur $\mathbb R$.
  • Oui c'est pourquoi je pose la question pour éclaircir "intégrable sur $\mathbb R$".
  • Bonjour,

    Soit $\displaystyle F(\alpha) = \int_{\R} \mid f(\alpha t) \mid dt$ avec $f$ une fonction de $\C$ dans $\C$ et $\alpha$ dans $\C$.

    On se demande la relation entre $\displaystyle F(\alpha)$ et $\displaystyle F(1)$ en supposant que ces intégrales existent.

    Pour $\displaystyle \alpha=0$, il faut nécessairement $\displaystyle f(0)=0$ et alors $\displaystyle F(0)=0$ tandis que $\displaystyle F(1)$ peut être quelconque, une relation est $\displaystyle F(0) = 0 \times F(1).$

    Pour $\displaystyle \alpha \neq 0$ :

    On a un cas particulier facile à traiter : $\displaystyle f(t) = g(\mid t \mid).$

    Alors, après un changement de variable $\displaystyle u= \mid \alpha \mid t$ on a $\displaystyle F(\alpha) = \frac{1}{\mid \alpha \mid} F(1).$

    Mais, dans un autre cas relativement facile, $\displaystyle f(t) = {1 \over 1+t^2}$ et $\alpha = \rho e^{i \theta}$ alors, après quelques calculs techniques (à vérifier), on trouve :
    $\displaystyle F(\rho e^{i \theta}) = {1 \over 2 \rho \cos \theta} F(1), \quad \cos \theta \neq 0.$

    ou encore $\displaystyle F(\alpha) = {1 \over 2 \Re(\alpha)}F(1).$

    Une forme générale de relation entre $F(\alpha)$ et $F(1)$ est très certainement hors d'approche car la relation dépend de la forme de $f$.
Connectez-vous ou Inscrivez-vous pour répondre.