suite concave — Les-mathematiques.net The most powerful custom community solution in the world

suite concave

Soit $\lambda \in \left] 0,1\right[ $ et $\left( u_{n}\right) _{n}$ une
suite telle que pour tout $n$ ,$u_{n+2}\geq \lambda u_{n+1}+\left( 1-\lambda
\right) u_{n}$

Montrer que $\left( u_{n}\right) _{n}$ est convergente ou tend vers +$\infty$
«1

Réponses

  • C'est faux avec $(u_n)_n$ définie par : $u_n = n$
    Et $\lambda=0.5$ vérifie bien : $2u_{n+2} \geq u_{n+1}+u_n$
  • vous avez raison , soit converge vers une limite finie ou $+\infty$
  • (edit : Mon indication est fausse. cela m'apprendra à ne pas écrire sur papier mon truc, je regarderai ce soir en rentrant, mais je vois le principe)

    Indication.

    Si pour un certain $n$, tu as $u_n \leq u_{n+1}$, alors tu auras : $u_{n+1} \leq u_{n+2}$
    Par récurrence, tu auras donc une suite croissante à partir d'un certain rang.

    Une suite croissante à valeur dans $\R$ est soit bornée et donc convergente, soit non bornée et donc de limite $+\infty$ (on suppose que la suite est à valeur dans $\R$)
  • Il me semble qu'une suite concave c'est plutôt une suite telle que : $ u_{n+1}\geq \frac 12(u _{n}+ u_{n+2})$.
  • @ Millie
    La condition donnée : $u_{n+2}\geq \lambda u_{n+1}+\left( 1-\lambda\right) u_{n}$, équivaut à : $u_{n+2}- u_{n+1} \geq (1-\lambda) (u_{n}- u_{n+1})$.
    La condition $u_n \leq u_{n+1}$ n'implique donc pas $ u_{n+1} \leq u_{n+2}$.
    C'est pour ça que tu dis que c'est faux je pense.
    Cet exo me semble suspect.
    Bonne soirée.
    Fr. Ch.
  • @Chaurien

    Une idée (peut être à développer)
    Si on pose $x_n=u_{n+1}-u_n$ alors la suite $x_n$ est croissante
    Si elle est majoré alors

    ....(edit je developpe un peu ce point dans ce cas $x_n\to l$.
    (1) Si $l\neq 0$, par Cesaro $u_n\sim nl$ et $u_n$ diverge
    (2) Si $l=0$.... ?)
    Si elle n'est pas majoré alors
    $u_{n+1}-u_n\to +\infty$
    ...?
    Le 😄 Farceur


  • Il n'est pas certain que cette suite soit croissante, majorée ou non.
  • si elle croissante en calculant $x_{n+1}-x_n}
    ah non une erreur
    Le 😄 Farceur


  • Je retire ce que j'ai (mé)dit.
    Je pense qu'on peut s'en sortir en considérant $v_n=\min(u_n,u_{n+1})$. Montrer d'abord que cette suite est croissante.
  • Autre piste. Soit $w_n=u_{n+1}+(1-\lambda) u_{n}$, c'est une suite croissante, etc.
    J'avais bien tort de médire de cet exo, c'est tout moi ça, soupe au lait.
  • Ah , j'aime ta suite $w_n$
    Le 😄 Farceur


  • Oui, j'avais effectivement fait le calcul dans ma tête et j'ai constaté mon erreur après avoir posté (surtout que j'avais pas utilisé le fait que $\lambda$ soit entre 0 et 1 strictement.

    $u_n \leq u_{n+1}$ implique $u_n \leq u_{n+2}$ (et non $u_{n+1} \leq u_{n+2}$...)
    Et de manière similaire $u_{n+1} \leq u_n$ implique $u_{n+1} \leq u_{n+2}$

    Et donc : $\forall n \in \N, min(u_n, u_{n+1}) \leq u_{n+2}$


    Et j'en étais restée là...

    edit : Le fait que $\lambda>0$ et $1-\lambda>0$ sert dans les inégalités.
  • Du coup, je retombe sur la suite $v_n$ de Chaurien.

    Avec :
    $\forall n \in \N,\ \min(u_n, u_{n+1}) \leq u_{n+2}$

    On trouve :
    $\forall n \in \N,\ \min(u_n, u_{n+1}) \leq \min(u_{n+1}, u_{n+2})$

    Donc $(v_n)_n$ converge ou est de limite $\infty$ (avec l'argument de la suite croissante à valeur dans $\R$)

    edit : Il manque cependant un argument. Ma "preuve" jusque là, fonctionne avec $\lambda=1$.
    Pourtant, avec cette valeur. $(v_n)_n$ converge ne nous dit pas que $(u_n)_n$ converge.

    Exemple simple :
    $u_n=n$ si n pair et $u_n=0$ si $n$ impair
    Qui vérifie bien :
    $\forall n \in \N,\ \min(u_n, u_{n+1}) \leq \min(u_{n+1}, u_{n+2})$ (ça vaut 0 tout le temps...)
  • Ce n'est pas toujours la même chose non?...Vu que $\lambda$ appartient à $]0,1[.$ On résout l'équation homogène, les racines de l'équation caractéristique sont $1$ et $(\lambda-1).$
    Une solution fondamentale de l'équation $v_{n+2}-\lambda v_{n+1}+(\lambda-1) v_{n}=\delta_{0,n}$ est $v_{n}=\frac{1}{1-\lambda}$ si $n\neq 0$ et $v_{0}=0.$

    Ainsi, si $u_{n+2}-\lambda u_{n+1}+(\lambda-1) u_{n}=\eta_{n}\geq 0$ alors, il existe $A,B$ appartenant à $\mathbb{R}$ tels que pour tout $n$ appartenant à $\mathbb{N},$

    \begin{align*}
    u_{n} & = A+B(\lambda-1)^{n}+\sum_{k=0}^{n}\eta_{n-k}v_{k}\\
    & = A+B(\lambda-1)^{n}+\sum_{k=1}^{n}\eta_{n-k}v_{k}\\
    & = A+B(\lambda-1)^{n}+\frac{1}{1-\lambda}\sum_{k=0}^{n-1}\eta_{k}.
    \end{align*}

    Le résultat demandé s'en déduit facilement (discussion sur la nature de la série de TG : $\eta_{k}$ à termes positifs).
  • @BobbyJoe

    Éclaire ma lampe, la suite $(u_n)$ vérifie une inégalité par une égalité.
    Le 😄 Farceur


  • Ecrire que la suite u satisfait une inégalité (celle écrite dans le thread) ou écrire que la suite u satisfait l'égalité que j'ai écrite est la même chose.... C'est formellement équivalent!
    C'est grâce à cela, que l'on peut résoudre facilement....
    C'est la même astuce d'écriture que pour résoudre des inéquations différentielles par exemple.
  • @BobbyJoe
    Ton niveau et tes connaissances en maths dépassent les miennes d'une année lumière, donc je ne mets pas en doute tes affirmations.
    Si je comprends bien , si toute suite $u_n$ solution de $X_{n+1}=f(X_n)$ convergente vers l, alors je peux déduire que toute solution $v_n$ du problème $X_{n+1}\leq f(X_n)$ est aussi convergente ?

    edit pour être plus claire si je prends f l'identité, avec l’égalité la suite $u_n$ est constante donc convergente et avec l’inégalité la suite $v_n$ est décroissante et pas forcement convergente
    Le 😄 Farceur


  • Je n'ai jamais dit ça.... Dans le cas linéaire, il suffit de connaitre une solution fondamentale de l'équation ainsi que les solutions de l'équation homogène, si elles sont assez simples, on peut conclure mais ça dépend des cas...
  • Justement je viens de donner un contre exemple dans le cas linéaire ( voir mon edit)
    Le 😄 Farceur


  • Ce n'est pas toujours vrai le résultat que tu as donné mais par contre, la preuve qui figure sur ce forum l'est!
  • Ok ça me dépasse, peut être je vais comprendre cette histoire un jour
    Merci
    Le 😄 Farceur


  • Ecris-le au lieu de te moquer! Ecris proprement les choses et tu verras....

    Dans ton exemple, on pose $\eta_{k}=u_{k+1}-u_{k}\leq 0.$ Cherchons la forme des suites qui satisfont cette propriété. On choisit $v_{n}=1$ si $n\geq 1$ et $v_{0}=0$ elle satisfait bien pour tout $n$ appartenant à $\mathbb{N},$ $v_{n+1}-v_{n}=\delta_{0,n}.$
    Ensuite, il existe $A$ appartenant à $\mathbb{R}$ tel que pour tout $n$ appartenant à $\mathbb{N},$

    \begin{align*}
    u_{n} & = A +\sum_{k=0}^{n}\eta_{n-k}v_{k}\\
    & = A+ \sum_{k=0}^{n-1}\eta_{k}.
    \end{align*}

    Ici, la suite soit converge soit tend vers $-\infty$ en fonction de la nature de la série à droite (qui est à termes négatifs ici!).
    Le problème que tu as posté n'est pas réellement un contre exemple....
  • Pourquoi tu dis que je me moques ? et puis qui suis-je pour me moquer de toi.

    Je n'ai pas compris le lien entre un problème de type " sous-solution " à un problème de type " solution"

    Si je n'ai pas compris ta méthode sur le champ, c'est que ça me dépassait

    Je vais regarder ton dernier post pour comprendre ce passage
    Le 😄 Farceur


  • D'accord mais c'est la même méthode que pour résoudre des équations linéaires (EDP, EDO, récurrence linéaire...).
  • C'est ça ce que je n'arrive pas à comprendre ( à mon niveau)
    Par exemple chercher les solutions du problème
    $y'+y\leq 1$
    sachant que les solutions du probleme $y'+y= 1$ sont $u(x)=ce^{-x}+1$
    Le 😄 Farceur


  • @BobyJoe

    Aie!, je me sens tout petit car je viens de comprendre ce que tu essayais de me dire ( j'ai une tète de mule :-D) Voila un bel exemple que j'ai trouvé :

    Soit f une fonction $ C^2|0,\pi]$ vérifiant :
    $$\forall x\in |0,\pi],\quad f''(x)+2f'(x)+2f(x) \geq e^{-x} ,\quad f(0)=1,\quad f'(0)=-1$$
    Montrer que $$\forall x\in |0,\pi], f(x)\geq e^{-x}$$
    Ce que tu essayais de me dire c'est de résoudre le problème $f''(x)+2f'(x)+2f(x) =g(x)$ puis après utiliser le fait que $g(x)\geq e^{-x}$


    désolé pour la déviation du fil mustapha
    Le 😄 Farceur


  • Si une âme charitable pouvait m'expliquer :-)

    Dans l'exemple "simple" : ici

    Je ne comprends pas pourquoi comment vous déduisez (des deux suites définies précédemment)

    \begin{align*}
    u_{n} & = A +\sum_{k=0}^{n}\eta_{n-k}v_{k}\\
    \end{align*}

    (tant que je n'ai pas compris cette implication, je ne pense pas pouvoir comprendre la première preuve...)
  • Il faut juste utiliser qu'une solution de l'équation est somme d'une solution particulière (obtenue par convolée d'une solution fondamentale avec le second membre) et d'une solution de l'équation homogène.
  • J'en reviens à mes deux idées, d'abord la première.
    Soit $v_{n}=\min (u_{n},u_{n+1})$. Suite croissante.
    $\bullet $ Premier cas. Supposons que la suite $v_{n}$ est majorée. Alors cette suite $v_{n}$ est convergente. Soit $L$ sa limite.
    On prouve par l'absurde que $(1-\lambda )u_{n+1}+\lambda v_{n}\leq L$ pour tout $n\in \mathbb{N}$. C'est la partie em...nuyeuse de la démonstration et peut-être quelqu'un en trouvera-t-il une preuve plus simple que la mienne.
    Il en résulte : $v_{n}\leq u_{n}\leq \frac{L-\lambda v_{n-1}}{1-\lambda }$.
    On passe à la limite quand $~n\rightarrow +\infty $, et c'est terminé.
    $\bullet $ Second cas. Supposons que la suite $v_{n}$ n'est pas majorée. Alors : $\displaystyle \underset{n\rightarrow +\infty }{\lim }v_{n}=+\infty $, et comme $u_{n}\geq v_{n}$, on en conclut : $\displaystyle \underset{n\rightarrow +\infty }{\lim } u_{n}=+\infty $.
    Bonne journée, quoique déjà froide.
    Fr. Ch.
    25/11/2017
  • Posons $v_{n}=\min \left( u_{n},u_{n+1}\right) $ , cette suite est croissante

    si $v_{n}\rightarrow +\infty $ , alors $u_{n}\rightarrow +\infty .$

    Si $v_{n}\rightarrow L\in \mathbb{R}$ . \

    Soit $\varepsilon >0$, alors il existe $n_{0}\in \mathbb{N}$ tel que : $%
    \forall n\geq n_{0}$ ,$~L-\varepsilon <v_{n}<L+\varepsilon .$

    D'après cette inégalité, $L-\varepsilon <u_{n} $ pour
    tout $n\geq n_{0}.$ ( puisque $v_{n}\leq u_{n}).$

    Je traite le cas $\lambda \geq \dfrac{1}{2}.$

    Soit $A=\left \{ k>n_{0}~/~u_{p}\geq L+\varepsilon \right \} $ .
    Supposons que $A$ est non vide , soit $p=\min A.$

    \bigskip $v_{p-1}=\min \left( u_{p},u_{p-1}\right) \leq L$ donc $%
    v_{p-1}=u_{p-1}$ par suite $L-\varepsilon <u_{p-1}\leq L.$ ( $p-1\geq n_{0}).
    $

    On a $u_{p+1}\geq \lambda u_{p}+\left( 1-\lambda \right) u_{p-1}>\lambda
    \left( L+\varepsilon \right) +\left( 1-\lambda \right) \left( L-\varepsilon
    \right) =L+\left( 2\lambda -1\right) \varepsilon \geq L.$

    $v_{p+1}=\min \left( u_{p},u_{p+1}\right) >L$ ce qui est absude ( $\left(
    v_{n}\right) _{n}$ est croissante de limite $L$, donc $v_{n}\leq L).$


    $A=\emptyset $, donc pour tout $n>n_{0}~,u_{n}<L+\varepsilon .,$ ce donne le
    résultat .

    Il me reste le cas $0\leq \lambda \leq \dfrac{1}{2}$
  • Seconde idée.
    Soit $w_n=u_{n+1}+(1-\lambda) u_{n}$. C'est une suite croissante, d'où les deux mêmes cas.
    $\bullet$ Premier cas. Si la suite $w_n$ est majorée, elle est convergente. On utilise un lemmeSoit une suite complexe $(u_{n})_{n\in \mathbb{N}}$ et un nombre complexe $a$, avec $\left\vert a\right\vert >1$, tels que : $\displaystyle \underset{n\rightarrow+\infty }{\lim }(au_{n+1}+u_{n})=L\in \mathbb{C}$.
    Alors : $ \displaystyle \underset{n\rightarrow +\infty }{\lim }u_{n}=\frac{L}{a+1}$.Ce lemme se prouve en exprimant $u_n$ en fonction de $z_n=au_{n+1}+u_{n}$, puis un argument de coupe-en-deux à la Cesàro. Et la question est réglée.

    $\bullet$ Second cas. Si la suite $w_n$ n'est pas majorée, on aimerait que comme pour Cesàro il y ait un lemme analogue au précédent pour une suite réelle de limite infinie. Malheureusement ce n'est pas le cas en général. Peut-être avec la monotonie de $w_n$ ? En tout cas je ne vois pas pour l'instant et je vous soumets la chose.

    Bonne journée.
    Fr. Ch.
    25/11/2017
  • Preuve de l'inégalité de Chaurien



    On va montrer que $\left( 1-\lambda \right) u_{n+1}+\lambda v_{n}\leq L$

    Si $u_{n+1}\leq u_{n}$ , alors $v_{n}=\min \left( u_{n},u_{n+1}\right)
    =u_{n+1}$ dans ce cas $\left( 1-\lambda \right) u_{n+1}+\lambda
    v_{n}=u_{n+1}=v_{n}\leq L.$

    Si $u_{n}\leq u_{n+1}$ , on va discuter deux cas aussi

    Si $u_{n+1}\leq u_{n+2}$ , alors $u_{n}\leq $\ $u_{n+1}\leq u_{n+2}$ par
    suite $\ \left( 1-\lambda \right) u_{n+1}+\lambda v_{n}=\left( 1-\lambda
    \right) u_{n+1}+\lambda u_{n}\leq u_{n+1}=v_{n+1}\leq L$

    Si $u_{n+2}\leq u_{n+1}$ , dans ce cas l'inégalité $\lambda
    u_{n}+\left( 1-\lambda \right) u_{n+1}\leq u_{n+2}$ entraine que

    $\ \ \ \lambda u_{n}\leq u_{n+2}-\left( 1-\lambda \right) u_{n+1}\leq
    u_{n+2}-\left( 1-\lambda \right) u_{n+2}=\lambda u_{n+2}$ donc $u_{n}\leq
    u_{n+2}.$

    On a ainsi $u_{n}\leq u_{n+2}\leq u_{n+1}$ ce qui donne que $\lambda
    v_{n}+\left( 1-\lambda \right) u_{n+1}=\lambda u_{n}+\left( 1-\lambda
    \right) u_{n+1}\leq u_{n+2}=v_{n+1}\leq L$
  • J'ajoute deux choses, répétées pour insister.
    1) Je répète que j'avais sous-estimé l'intérêt de cet exercice.
    2) Et je répète que la suite en question n'est pas du tout une suite concave. J'ai donné plus haut la définition d'une suite concave.
  • oui pour suite concave j'ai juste mis ce mot pour attirer l'attention et lancé un débat et des discussions
  • J'ai mis cet exercice en colle et j'avait cru que c'était très simple, après je me suis aperçu que c'est pas évident et la raison pour laquelle j'ai cherché cet échange .Merci pour vous idées.
  • On peut prendre $\lambda >0$ au lieu de $0<\lambda <1$
    Le cas $\lambda =1$ est trivial
    Le cas $\lambda =2$ c'est la defintion officielle de la concavité d'une suite
    Chaurien (tu)

    @millie
    As-tu compris la méthode de Bobbyjoe ( moi pas encore à 100%)
    Le 😄 Farceur


  • C'est rapide si le sujet est guidé... Mais à froid pour des sup, ce n'est pas facile en effet....
  • Pour $\lambda>0$ qcq, ça ne marche pas justement....
  • Merci de ce message lien qui achève le point où j'étais bloquée. Le cas $\lambda=1$ (où c'est faux) m'avait laissé pantois, mais je ne voyais pas comment m'extirper du problème.

    La preuve de BobbyJoe va bien au delà de mes connaissances actuelles. L'exercice me semblait-être un exercice de L1 (ou maths sup), et il devait bien y avoir une solution plus "terre à terre".

    @gebrane : Absolument pas :-D Si l'on me fournissait des mots clefs sur lequel repose cette méthode, cela m'aiderait à trouver.
  • La solution que j'ai proposée est du niveau de maths Sup.... Le seul passage "compliqué" est comment fabriquer une solution particulière de l'équation initiale (qui devient une égalité avec ls bonnes notations). Ceci peut-être détaillé en proposant la formule et de la démontrer par récurrence ou de se ramener au cas arithmético-géométrique avec un second membre qcq par une transformation sur la suite (celle donnée par les racines de l'équation homogène)... Pour ce dernier cas, un télescopage pour fabriquer la solution particulière est possible.

    @Miliie : solution fondamentale, convolution, opérateur de dérivation (inversion) .... cette méthode est le plus souvent utilisée dans des cas continus... On a juste plus d'outils pour fabriquer les solutions particulières dans le cas continu.
  • @ millie
    le cas $\lambda =1$ est trivial car dans ce cas la suite (u_n) est croissante
    Le 😄 Farceur


  • Je pense qu'on exploiter cette id\'{e}e aussi :

    Notons $r_{1}$ et $r_{2}$ les racines de $X^{2}-\lambda X-\left( 1-\lambda
    \right) $ , on \ a $r_{1}+r_{2}=\lambda $ \ et $r_{1}r_{2}=-\left( 1-\lambda
    \right) $

    Posons $a_n=u_{n+1}-r_{1}u_{n}$ , on $\
    a_{n+1}-r_{2}a_{n}=u_{n+2}-\lambda u_{n+1}-\left( 1-\lambda \right)
    u_{n}=b_{n}\geq 0$

    ce qui donne $\dfrac{a_{n+1}}{r_{2}^{n+1}}-\dfrac{a_{n}}{r_{2}^{n}}=\dfrac{%
    b_{n}}{r_{2}^{n}}$ donc $\dfrac{a_{n}}{r_{2}^{n}}=a_{0}+\sum_{k=0}^{n-1}\dfrac{b_{k}}{r_{2}^{k}}$ puis $a_{n}=a_{0}r_{2}^{n}+%
    \sum_{k=0}^{n-1}b_{k}r_{2}^{n-k}$

    Puis $u_{n+1}-r_{1}u_{n}=a_{n}$ donne que $u_{n}=u_{0}r_{1}^{n}+\sum_{k=0}^{n-1} a_{k}r_{1}^{n-k}$
  • Bravo... Tu viens retrouver la preuve donnée dans le thread ^^ Et l'idée de la preuve générale pour résoudre des équa diff à coefficients constants!
  • Aaah ! Je voulais dire le cas $\lambda=0$

    (avec ce type de suite : $u_n=n$ si n pair et $u_n=0$ si n impair)

    edit : Du coup, j'aime bien la dernière méthode de mustapha que je comprends sur le coup ^^
  • D'accord Gebrane, le rouge, s'il était vert, ce serait la couleur de l'espérance.
  • oui c'est la méthode que j'utilise dans mon cours pour résoudre les équat diff du second ordre homogène à coefficients constants et aussi les suites récurrentes d'ordre 2 linéaires à coefficients constants
  • Et je ne sais pas ce que c'est qu'un thread, je croyais qu'on était sur un forum francophone.
  • Maintenant à la base de cette discussion , je me pose si on peut généraliser cet exercice
    Etant donné $\lambda_1,\lambda_2,\lambda_3 $ strictement positifs tel que :$\lambda_1+\lambda_2+\lambda_3=1$
    et $(u_n) $ une suite réelle telle que pour tout n , $u_{n+3}\geq \lambda_1 u_{n+2}+\lambda_2 u_{n+1}+\lambda_3 u_{n}$

    Après remplacer 3 par p entier supérieur ou égal à 2
  • Si $r$ est une racine de l'équation caractéristique, je pense qu'en posant $w_n=u_{n+1}-ru_n$ on se ramènera au cas déjà étudié.
  • @musta

    Dans ce message http://www.les-mathematiques.net/phorum/read.php?4,1567954,1570128#msg-1570128 tu trouves $$u_{n}=u_{0}r_{1}^{n}+\sum_{k=0}^{n-1} (u_{k+1}-r_{1}u_{k})r_{1}^{n-k}$$

    Apres comment tu conclus que $(u_n)$ tend vers $+\infty$ ou converge?

    edit tu n'as pas prouver que le signe des $(u_{k+1}-r_{1}u_{k})$ est constant sauf si je suis aveugle
    Le 😄 Farceur


Connectez-vous ou Inscrivez-vous pour répondre.
Success message!