Limite d'une suite d’intégrales

Salut. Je bloque depuis tout à l'heure sur un petit exo de suite d'intégrale. Voici l'énoncé.

Soit $f$ une fonction $CM([0,1],\mathbb C)$ continue en $1$, déterminez $\lim\limits_{n\rightarrow \infty}\int_{0}^{1}nt^nf(t)dt$

J'ai procédé par la même méthode à une différence près mais je ne sais pas pourquoi j'aboutis à des résultats différents.
Première méthode : changement de variable $t=\frac{x}{n}$
l'intégrale devient $\int_{0}^{n}{(\frac{x}{n})}^nf(\frac{x}{n})dx$
on pose
$f_n(x)={(\frac{x}{n})}^nf(\frac{x}{n}),\ x\leq n$
$f_n(x)=0 ; x>n$.
O
n a donc $\int_{0}^{n}{(\frac{x}{n})}^nf(\frac{x}{n})dx=\int_{0}^{n}f_n(x)dx=\int_{0}^{+\infty}f_n(x)dx$.
C
omme $f_n$ est $CM([0,1],\mathbb C)$ donc bornée par $M$.
O
n pose $\phi(x)=M$ on a donc $|f_n|<\phi$ qui est intégrable sur $[0,+\infty[$.
O
n a $f_n$ converge simplement vers la fonction nulle sur $[0,+\infty[$ (produit d'une fonction bornée est une fonction qui converge simplement vers 0, ou si vous n'êtes pas convaincu, on peut toujours encadré $f_n(x)$ par deux fonctions qui convergent simplement vers 0 c'est facile !)
Toutes les hypothèses du théorème de convergence dominée sont vérifiées
Conclusion $$\lim_{n\rightarrow \infty}\int_{0}^{+\infty}f_n(x)dx=\int_{0}^{+\infty}\lim_{n\rightarrow \infty}f_n(x)dx=0$$
Deuxième méthode :
La même sauf que le changement de variable est cette fois-ci $t=1-\frac{x}{n}$
l'intégrale devient $\int_{0}^{n}{(1-\frac{x}{n})}^nf(1-\frac{x}{n})dx$.
O
n pose
$f_n(x)={(1-\frac{x}{n})}^nf(1-\frac{x}{n}) ,\ x\leq n$
$f_n(x)=0 ; x>n$.
O
n a donc $\int_{0}^{n}{(1-\frac{x}{n})}^nf(1-\frac{x}{n})dx=\int_{0}^{n}f_n(x)dx=\int_{0}^{+\infty}f_n(x)dx$.
C
omme $f_n$ est $CM([0,1],\mathbb C)$ donc bornée par $M$.
O
n pose $\phi(x)=e^{-x}M$ on a donc $|f_n|<\phi$ qui est intégrable sur $[0,+\infty[$.
O
n a $f_n$ converge simplement vers la fonction $e^{-x}f(1)$ (car $f$ est continue en 1) sur $[0,+\infty[$.
T
outes les hypothèses du théorème de convergence dominée sont vérifiées.
Conclusion $$\lim_{n\rightarrow \infty}\int_{0}^{+\infty}f_n(x)dx=\int_{0}^{+\infty}\lim_{n\rightarrow \infty}f_n(x)dx=\int_{0}^{+\infty}e^{-t}f(1)dt=f(1)$$
La différence entre les deux démonstrations est la continuité de $f$ en 1 qui a servi dans la deuxième démonstration, mais dans la première démonstration on n'avait pas besoin de ce point car la fonction $f$ a été multipliée par une fonction qui converge simplement vers 0.
Si vous avez quelque chose à me corriger n'hésitez pas, je suis prenante.

Réponses

  • Ta première méthode ne marche pas car ta fonction $\phi$ n'est bien entendu pas intégrable sur $\mathbb R^+$ !

    Au passage, ta fonction $f_n$ est bel et bien bornée sur $\mathbb R^+$, mais dire qu'elle est continue par morceaux sur $[0, 1]$ n'est pas suffisant (ce n'est même pas le domaine d'intégration qui nous intéresse).
  • Alda a écrit:
    comme $f_n$ est $CM([0,1],\mathbb C)$ donc bornée par $M$

    on pose $\phi(x)=M$ on a donc $|f_n|<\phi$ qui est intégrable sur $[0,+\infty[$

    Telle que, la première déduction est fausse : chaque fonction \(f_n\) est bornée sur \([0,1]\), mais sa borne supérieure dépend a priori de l'entier \(n\) et devrait être notée \(M_n\) : il faut justifier plus précisément l'existence d'une borne supérieure \(M\) commune à toutes les fonctions \(f_n\).

    Quant à la seconde affirmation : comment justifies-tu que la fonction CONSTANTE \(\phi\) soit intégrable sur \([0,+\infty[\) ?
  • ...J'ai honte de moi...
    En même temps je n'ai pas compris votre deuxième remarque Poirot.
    gb j'ai compris le fait que $M$ dépend a priori de $n$ mais il suffit de voir la définition de $f_n$ pour comprendre que l'on peut trouver une borne sup à toute les $f_n$, qu'en pensez-vous ?
  • J'ai bien constaté la majoration uniforme ; je n'ai d'ailleurs pas dit que l'affirmation était fausse, mais qu'elle demandait une justification plus soignée pour lever un doute bien compréhensible.
  • Ah d'accord, merci. C'est vrai que ces "petits" détails qui font la différence et la clarté du raisonnement.
  • Concernant ma seconde remarque : tu dis que $f_n$ est continue par morceaux sur $[0, 1]$ donc est bornée (sous-entendu su $\mathbb R^+$ manifestement). C'est bien sûr faux. De toute façon, "là où il se passe des choses" pour $f_n$ est bien plus grand que $[0, 1]$, c'est $[0, n]$ en général. Bref, ce n'est qu'une remarque mineure, je pense que tu as compris ton erreur : le majorant dont tu te sers et qui provient de la bornitude de $f$ est valable sur $[0, n]$ pour $f_n$, et donc pour avoir une hypothèse de domination du même style il faudrait prendre une fonction constante non nulle sur $\mathbb R^+$, qui malheureusement n'est pas intégrable.
  • Bonjour !
    L'indication de l'énoncé : $f$ continue en 1 incite à considérer la fonction $g : t\mapsto f(t)-f(1)$.
  • @Alda : Quitte à couper du $\varepsilon$ en deux, il n'est pas indispensable d'utiliser le théorème de convergence dominée pour cet exercice.
    Les définitions epsilonesques de la continuité et de la convergence d'une suite suffisent !
Connectez-vous ou Inscrivez-vous pour répondre.