Pensez à lire la Charte avant de poster !

$\newcommand{\K}{\mathbf K}$


Les-Mathematiques.net - Cours de mathématiques supérieures
 Les-Mathematiques.net - Cours de mathématiques universitaires - Forum - Cours à télécharger

A lire
Deug/Prépa
Licence
Agrégation
A télécharger
Télécharger
151 personne(s) sur le site en ce moment
E. Cartan
A lire
Articles
Math/Infos
Récréation
A télécharger
Télécharger
Théorème de Cantor-Bernstein
Théo. Sylow
Théo. Ascoli
Théo. Baire
Loi forte grd nbre
Nains magiques
 
 
 
 
 

Oral Mines-Ponts

Envoyé par Mrocdemorgat 
Oral Mines-Ponts
il y a cinq semaines
Bonjour.

On considère $f$ de classe $C^1$ de $\R^+$ dans $\R$, et on suppose que $f$ et $f'^2$ sont intégrables sur $\R^+$.

Il s'agit de montrer que $f(x)$ tend vers $0$ quand $x$ tend vers $+\infty$.

Dans le cas où $f>0$, j'arrive à conclure en considérant $g=f^{3/2}$ et en prouvant que $g'$ est intégrable sur $\R^+$: j'en déduis alors que $f$ a une limite $l$ en $+\infty$, et il alors facile de conclure que $l=0$.

Par contre, je ne sais pas quoi faire dans le cas général. Auriez-vous des idées?

Merci d'avance.
Re: Oral Mines-Ponts
il y a cinq semaines
On a pour $x>y$ : $\displaystyle f(x)-f(y)=\int_{y}^{x}f'(t)dt.$
On a alors en intégrant la relation précédente pour tout $1 \ll h<x$ :
\begin{align*}
(x-h)f(x) & =\int_{h}^{x}f(t)dt+\int_{h}^{x}\left(\int_{y}^{x}f'(t)dt\right)dy.\\
& =\int_{h}^{x}f(t)dt+\int_{h}^{x}f'(t)(t-h)dt.
\end{align*}

Il vient alors par l'inégalité de Cauchy-Schwarz pour une certaine constante $C>0$ :
\begin{align*}
(x-h)\vert f(x) \vert & \leq \int_{h}^{x}\vert f(t) \vert dt+\sqrt{\int_{h}^{x}f'(t)^{2} dt}\times \sqrt{\int_{h}^{x}(t-h)^{2}dt}\\
&\leq \|f\|_{1,[h,+\infty[}+C(x-h)^{\frac{3}{2}}\|f'\|_{2,[h,+\infty[}\\
& \leq A_{1}(h)+C(x-h)^{\frac{3}{2}}A_{2}(h).
\end{align*}

Il vient alors pour tout $h\gg1,$ pour tout $\lambda>0,$
$$\vert f(h+\lambda)\vert \leq \frac{A_{1}(h)}{\lambda}+C\sqrt{\lambda} A_{2}(h).$$

On pourrait alors optimiser l'inégalité précédente (mais ceci ne sert qu'à avoir des vitesses de convergence) mais par le théorème d'encadrement, il vient (comme $f$ et $f'^{2}$ sont intégrables) : $\displaystyle \lim_{x\rightarrow +\infty}f(x)=0.$
Re: Oral Mines-Ponts
il y a cinq semaines
avatar
Bonjour,

Si la fonction $f$ continue est intégrable sur $\R^+$ alors $\int_{\R^+} f(t)dt =A\in \R.$

Si la fonction $f$ admet une limite $L\neq 0$ à l’infini, alors elle est plus grande que $L/2$ à partir d’un certain $a>0$ dans le cas $L>0$ : $\int_a^{+\infty} f(t) dt =\lim_{b\to +\infty} \int_a^b f(t) dt\geq \lim_{b\to +\infty} (b-a) L/2=+\infty$ : contradiction.
De même dans le cas $L<0.$

On a montré que si la limite existe, alors elle est nulle.

Si la fonction $f’^2$ continue est intégrable sur $\R^+$ alors $\int_{\R^+} f’^2(t)dt =B \in \R$ avec $B\geq 0.$

...
Re: Oral Mines-Ponts
il y a cinq semaines
Bonjour,

Utilisation d'une inégalité de type "Gagliardo-Nirenberg" (modification du nom suite à message de BobbyJoe ci-dessous).
Ça n'apporte donc rien par rapport à la démonstration de BobbyeJoe et c'est même d'une certaine façon la même démonstration.


Rappel de cette inégalité : si $f$ est de classe $C^1$ sur le segment $[a;b], a <b$ alors $\forall x\in [a;b], |f(x)|\le \frac{1}{b-a} |\int_{a}^{b} f(t)dt| +\int_{a}^{b} |f^{'}(t)|dt$ (1)

Soient $a, b, 0<a<b, x\in [a;b]$
On a donc l'inégalité (1)
Soient $M_0(a)=sup_{b\ge a} |\int_{a}^{b} f(t)dt|$ et $M_1(a)= (sup_{b\ge a} |\int_{a}^{b} |f^{'2}(t)|dt)^{1/2}$
Les hypothèses assurent que ces valeurs sont finies et le critère de Cauchy appliqué à la convergence des intégrales de $f$ et $f^{'2}$ assure que $M_0(a), M_1(a)$ tendent vers $0$ lorsque $a$ tend vers l'infini.

Une fois tout ceci posé,on a, grâce à l'inégalité de Cauchy-Schwarz appliquée à la 2ème intégrale et en prenant $x=a$, $\forall b\ge a, |f(a)|\le M_0(a)/(b-a)+M_1(a)(b-a)^{1/2}$, puis en prenant la plus petite valeur $b-a$ supérieure à $0$ qui minimise le membre de droite (prendre $b-a=(2M_0(a)/M_1(a))^{2/3}$, on trouve

$|f(a)| \le CM_{0}(a)^{1/3}M_{1}(a)^{2/3}$ avec $ C=2^{1/3}+2^{-2/3}$

inégalité qui permet de conclure car le membre de droite tend vers $0$ lorsque $a$ tend vers l'infini.

Rem et vérification de l'homogénéité du résultat obtenu (si non homogène on pourrait alors l'améliorer la majoration).
Unité de $f$ : $F$, unité de $t$ : $T$. Alors $M_0(a)$ est homogène à $FT$, $M_1(a)$ est homogène à $F/T^{1/2}$ et donc le majorant est homogène à $F$.



Edité 5 fois. La derni&egrave;re correction date de il y a cinq semaines et a &eacute;t&eacute; effectu&eacute;e par side.
Re: Oral Mines-Ponts
il y a cinq semaines
Ce type d'inégalités s'appelle des inégalités de Gagliardo-Nirenberg et découlent d'arguments d'interpolation couplés aux injections de Sobolev (du moins pour les inégalités sans les constantes optimales) dont voici un lien en anglais :
[en.wikipedia.org].
Il est d'ailleurs à noter (mais je me répète...) que les injections de Sobolev sont-elle mêmes conséquences de l'inégalité isopérimétrique (ou du plongement de Sobolev lorsque le gradient est dans $L^{1}$).
Re: Oral Mines-Ponts
il y a cinq semaines
Si $f'^2$ est de carré intégrable sur $\mathbb R_+$, alors $f$ est uniformément continue sur $\mathbb R_+$.
Si $f$ est uniformément continue et intégrable sur $\mathbb R_+$, alors sa limite est nulle en $+\infty$.
Re: Oral Mines-Ponts
il y a cinq semaines
Bonjour,
une autre technique (celle de Chaurien ? )
en notant $F$ une primitive de ${f'}^2$ et puisque ${f'}^2$est intégrable sur $\mathbb{R}$ par application du critère de Cauchy pour les integrales:
Soit $\epsilon \in \mathbb{R}^{+}$ alors $\exists A \in \mathbb{R}$ tel que $\forall x, y $ tels que $A \leq x \leq y$, on a $F(y)-F(x) \leq \epsilon$
c'est à dire $\lim_{A\rightarrow +\infty} F(A)=0$
en particulier par application de l'inégalité de Cauchy Schwartz et puisque $f$ est intégrable :
on a pour $A \in \mathbb{R}^{+}$ et pour $B \geq A$, $(f(B)-f(A))\times (B-A)\leq F(B)-F(A)$
inégalité qui est mise en défaut si $f$ n'est pas de limite nulle en $+\infty$



Edité 1 fois. La derni&egrave;re correction date de il y a cinq semaines et a &eacute;t&eacute; effectu&eacute;e par callipiger.
Re: Oral Mines-Ponts
il y a cinq semaines
Bonjour,

@callipiger
le" c'est à dire $\lim_{A\rightarrow +\infty} F(A)=0$" est incorrect quel que soit le choix de la primitive $F$ de $f^{'2}$.
Re: Oral Mines-Ponts
il y a cinq semaines
@ side
merci pour la remarque...
donc cela dit simplement que la limite est bornée... si je comprends bien votre remarque ?
ce qui n'invaliderait pas la suite du raisonnement je crois (mais je vais vérifier, car là je réponds déjà trop vite)

où peut-t-on s'en sortir en prenant la primitive qui "s'annule" en $+\infty$ ? où alors c'est un raccourci trop brutal voire faux ?
Re: Oral Mines-Ponts
il y a cinq semaines
Le critère de Cauchy indique juste que $F$ a une limite en $+\infty$, ce qu'on sait déjà si on écrit $F(x)=\int_{x_0}^{x} f^{'2}(t)dt$ (et qu'on utilise d'ailleurs pour écrire ce critère de Cauchy).
$\int_{+\infty}^{x} f^{'2}(t)dt$ est une primitive qui tend vers $0$ à l'infini.
Re: Oral Mines-Ponts
il y a cinq semaines
alors je choisis cette primitive là !
Re: Oral Mines-Ponts
il y a cinq semaines
Soit $f$ une fonction de classe $\mathcal{C}^{1}$ sur $\mathbb{R}_{+}$, à valeurs réelles, telle que $f'^2$ est de carré intégrable sur $\mathbb{R}_{+}$.
Soit $0 \le x \le y$. L'inégalité de Cauchy-Schwarz donne :
$\displaystyle \left\vert ~f(y)-f(x)\right\vert =\left\vert \int_{x}^{y}1·f^{~\prime }(t)dt\right\vert \leq\sqrt{\int_{x}^{y}1^{2}dt} \sqrt{\int_{x}^{y}f^{~\prime }(t)^{2}dt}\leq \sqrt{\int_{0}^{+\infty }f^{~\prime }(t)^{2}dt }\sqrt{y-x}$$\le K \sqrt{y-x}$, $K>0$.
La fonction $f$ est donc uniformément continue sur sur $\mathbb{R}_{+}$.
Re: Oral Mines-Ponts
il y a cinq semaines
$\bullet $ Soit une fonction $f$ à valeurs réelles ou complexes, uniformément continue et intégrable sur $[0,+\infty \lbrack =\mathbb{R}_{+}$.
Alors : $\underset{x\rightarrow +\infty }{\lim }f(x)=0.$

---------------------------------------------------------------------------------------------------------------------------------------------

$\bullet $ Soit $\varepsilon >0$. La fonction $f$ étant uniformément continue sur $\mathbb{R}_{+}$, il existe $\eta >0$ tel que : $\forall x_{1}\in \mathbb{R}_{+},\forall x_{2}\in \mathbb{R}_{+},\left\vert x_{1}-x_{2}\right\vert \leq \eta \Rightarrow \left\vert~f(x_{1})-f(x_{2})\right\vert \leq \frac{\varepsilon }{2}$.

La fonction $f$ étant intégrable sur $\mathbb{R}_{+}$ il existe $%
A\in \mathbb{R}_{+}$ tel que : $\displaystyle \int_{A}^{+\infty }\left\vert
~f(t)\right\vert dt\leq \frac{\eta \varepsilon }{3}$.

$\bullet $ Procédons par l'absurde. S'il existait $x_{0}\geq A$ tel que $%
\left\vert f(x_{0})\right\vert >\varepsilon $, alors pour tout $x$ tel que $%
\left\vert x-x_{0}\right\vert \leq \eta $ et $x\geq 0$, on aurait : $\left\vert ~f(x)-f(x_{0})\right\vert \leq \frac{\varepsilon }{2}$, d'où :
$\left\vert ~f(x)\right\vert =\left\vert
~(f(x)-f(x_{0}))+f(x_{0})\right\vert \geq \left\vert ~f(x_{0})\right\vert
-\left\vert ~f(x)-f(x_{0})\right\vert >\varepsilon -\frac{\varepsilon }{2}=%
\frac{\varepsilon }{2}$.

C'est vrai en particulier pour $x\in \left[ x_{0},x_{0}+\eta \right] $, et il s'ensuit :
$\displaystyle \frac{\eta \varepsilon }{3}\geq \int_{A}^{+\infty }\left\vert
~f(t)\right\vert dt\geq \int_{x_{0}}^{x_{0}+\eta }\left\vert
~f(t)\right\vert dt\geq \int_{x_{0}}^{x_{0}+\eta }\frac{\varepsilon }{2}%
dt=\eta \frac{\varepsilon }{2}$. Impossible.

Sans critère de Cauchy, qui n'est plus au programme de CPGE.

Bonne journée
20/07/2019
Re: Oral Mines-Ponts
il y a cinq semaines
Complément.
Sous les hypothèses que j'ai posées précédemment, la fonction $|f|$ est bornée sur $ \mathbb{R}_{+}$ et atteint son maximum.
Si l'on suppose de plus que $f(0)=0$, alors :
$\displaystyle \max_{x\in \mathbb{R}_{+}}\left\vert ~f(x)\right\vert
\leq 2^{\frac{2}{3}}(\int_{0}^{+\infty }\left\vert ~f(t)\right\vert dt)^{%
\frac{1}{3}}(\int_{0}^{+\infty }f^{~\prime }(t)^{2}dt)^{\frac{1}{3}}$.
Seuls les utilisateurs enregistrés peuvent poster des messages dans ce forum.

Cliquer ici pour vous connecter

Liste des forums - Statistiques du forum

Total
Discussions: 136 324, Messages: 1 317 841, Utilisateurs: 24 014.
Notre dernier utilisateur inscrit Matlac.


Ce forum
Discussions: 30 114, Messages: 276 939.

 

 
©Emmanuel Vieillard Baron 01-01-2001
Adresse Mail:

Inscription
Désinscription

Actuellement 16057 abonnés
Qu'est-ce que c'est ?
Taper le mot à rechercher

Mode d'emploi
En vrac

Faites connaître Les-Mathematiques.net à un ami
Curiosités
Participer
Latex et autres....
Collaborateurs
Forum

Nous contacter

Le vote Linux

WWW IMS
Cut the knot
Mac Tutor History...
Number, constant,...
Plouffe's inverter
The Prime page