Partage

Bonjour,

Je vous partage un problème que j'ai trouvé dans un bouquin qui est intéressant.

Déterminer tous les couples $a,b$ d'entiers naturels non nuls tel que $a^4+4b^4$ est un nombre premier.

A vos stylos amusez vous bien ;-)

PS: je ne sais pas si cette pratique est courante sur le forum mais des exos de ce type en arithmétique j'en ai à la pelle si vous voulez, je me suis acheté 1000 challenges mathématiques Algèbre alors si ca vous intéresse, dites le moi!

Réponses

  • Calculons : $(a^2 - 2 a b + 2 b^2) (a^2 + 2 a b + 2 b^2)$
  • Oui Cidrolin :-)

    Un deuxième pour la route.

    Soit $k$ un entier donné. Alors il existe un nombre premier $p$ et une suite d'entiers strictement positifs strictement croissante $(a_n)$ tels que les $p+ka_i$ soient tous premiers.
  • Si $k=0$, c'est évident.
    Sinon, soit $p$ un nombre premier ne divisant pas $k$.
    D'après le théorème de la progression arithmétique (Dirichlet), il existe une infinité de nombre premiers congrus à $p$ modulo $k$.
  • Jamais deux sans trois.

    On donne
    $34!=295\ 232\ 799\ cd9\ 604\ 140\ 847\ 618\ 609\ 643\ 5ab\ 000\ 000$.

    Déterminer les valeurs de $a,b,c,d$
  • Formule de Legendre pour déterminer les premiers chiffres de $(34!)/10^6$ ?
  • Je n'avais pas compris que l'activité de ce forum consistait à acheter un recueil d'exercices et à les poser l'un après l'autre. En l'occurrence une compilation sans grande originalité affublée d'un titre en globish alors que dans la langue française nous avons le mot « défi ».
  • Bonne nuit,

    Bof !! $34!=295232799039604140847618609643520000000$.

    Cordialement,

    Rescassol
  • @Chaurien

    Comme je l'ai dit dans le message, le titre et le PS, il s'agit d'une initiative nouvelle. J'ai cru comprendre que nous étions entre gens qui aiment faire des mathématiques et j'ai trouvé que c'était une bonne idée. Personnellement, j'ai pris du plaisir à résoudre ces problèmes et je me suis dit que je pouvais en faire profiter d'autres.
  • Continue.
  • Ok ;-)

    Celui là je l'ai pas encore trouvé :

    Soient $n$ nombres premiers formant une suite arithmétique $a,a+r,...,a+(n-1)r$. Montrer que tout premier $p<n$ divise $r$.

    D'ailleurs je suis aussi ouvert à ce genre de problèmes arithmétiques si vous en avez.
  • Soit $p$ un nombre premier $< n$. Par le principe des tiroirs, les entiers $a, a+r, \dots, a+(n-1)r$ ne peuvent tous être distincts modulo $p$. Donc il existe $i \neq j$ avec $0 \leq i,j \leq n-1$ tels que $a+ir=a+jr \pmod p$, soit $(i-j)r=0 \pmod p$.

    Je ne sais pas comment utiliser l'hypothèse de primalité des $a+kr$.
  • Je crois qu'elle sert à dire que p ne peut être égal à un des $a+kr$, sinon on ne peut pas appliquer le principe des tiroirs.
  • Non je rectifie, elle sert à montrer que $n\leq a$
  • Salut,

    Le principe des tiroirs de Poirot ne peut marcher ainsi, car de toute façon que on a effectivement $a+0r=a+pr$ modulo $p$.

    On peut raisonner comme suit: si $r$ n'est pas un multiple de $p$ alors il est inversible modulo $p$ donc il existe $k<p<n$ tel que $a=-kr \mod p$. Puisque $a+kr$ est premier, ça implique $a+kr=p$. En particulier, $a\leq p<n$, ce qui n'est pas possible car ça implique que $a+ar$ est premier.
  • Je relance:

    Existe t-il un plus grand entier $k$ vérifiant la propriété arithmétique suivante, et si oui lequel: pour tout entier $a$ premier á $k$, $a^2=1 \mod k $ (autrement dit, le groupe des inversibles modulo k est d exposant 2)
  • Un groupe abélien fini d'exposant $2$ est nécessairement isomorphe à un $(\mathbb Z/2 \mathbb Z)^r$ d'après le théorème de structure des groupes abéliens finis. Comme tous les $(\mathbb Z/p^{\alpha} \mathbb Z)^{\times}$ sont cycliques (avec $p$ premier) d'ordre $p^{\alpha-1}(p-1)$, sauf pour $p=2$, et que les seuls $(\mathbb Z/2^r \mathbb Z)^{\times}$ d'exposant $2$ correspondent à $r=1,2,3$, on trouve, avec le théorème chinois, qu'il n'y a qu'un nombre fini de tels $k$ : $$\{1, 2, 3, 2 \times3, 4, 8, 4 \times 3, 8 \times 3\}.$$ Le plus grand tel $k$ est donc $3 \times 8 = 24$.
  • Bonjour ,le fil me semble intéressant donc je relance avec :
    $$\frac{1}{\phi}=\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{....}}}}}}}} $$
    $$\frac{1}{\phi}=\frac{e^{-\pi}\sqrt{5e^{2\pi}-4}-1}{2}+\frac{e^{-\pi}}{\sqrt{1+\sqrt{5e^{2\pi}-4+(5e^{2\pi}-4)\sqrt{5e^{2\pi}-4+(5e^{2\pi}-4)\sqrt{5e^{2\pi}-4+(5e^{2\pi}-4)\sqrt{..}}}}}}$$
  • Un problème de la version d'essai de quadrature, qui vient surement des OIM

    Soit $\epsilon > 0$ . Montrer qu'il existe une partition de $\N$ en une infinité de suites arithmétiques infinies de raisons $d_1,d_2,d_3...$ telles que la somme des $\dfrac{1}{d_i}$ soit strictement inférieure à $\epsilon$
  • Je vous présente ce que j'ai fait pour résoudre ça, je pense être sur la bonne voie mais c'est incomplet.

    Soit $\epsilon>0$.

    Je pose $d_1$ le plus petit entier supérieur ou égal à 2 tel quel $\dfrac{1}{d_1}<\dfrac{\epsilon}{2}$ et je pose comme première suite $(u_n^0)$ définie par $u_n^0=nd_1$.

    Comme deuxième suite je prends $u_n^1=1+2d_1$.

    Comme $i+1$-ème suite je prends $u_n^i=i+2^i d_1 n$, pour $i<d_1$.

    On vérifie que ces suites sont disjointes.

    Pour la suite il faudrait commencer une suite de premier terme $d_1 +1$ de raison $2^{d_1}d_1$ mais je ne vois pas pas comment avancer dans le long terme, pour donner une formule générale de la suite $k$.
  • [small][/small]A vu de nez : $d_i =\frac{(i \pi)^2}{3 \varepsilon}$

    Mais je n'ai peut-être pas compris la question :)
  • J'ai mal posé la question je modifie le message
  • En fait, j'essayes d'utiliser la suite de groupe
    $$
    \Z / 2^n \Z \to \Z/2^{n-1}\Z \to \dots \Z/2\Z
    $$
    Pour former la partition : $P_k := \{ x \in \N, x \mod{2^k} = 2^{k-1} \} $ et qui fournit des suites arithmétiques $(s^{k}_n) = 2^k n +2^{k-1}$ de raison $2^k$.

    Ca ressemble a ta méthode ?
  • On dirait mais je ne comprends pas trop ce que tu fais :-S Tu pourrais développer s'il te plaît ?

    Et la somme des inverses de tes raisons est égale à 1 je crois bien, il faut que ce soit inférieur à $\epsilon$.
  • Ça ne marche pas bien ce que j'ai fait ! J'oublie les puissances de $2$ et $0$.
Connectez-vous ou Inscrivez-vous pour répondre.