Nombres premier -3 = somme des différences.

Bonjour,

J'ai remarqué que la suite :
- Nombres premiers moins 3 (0, 2, 4, 8, 10, 14, 16, 20...)

Donne la même suite que la somme des différences entre les nombres premiers successifs :
3-2=0
5-3=2
7-5=2
11-7=4
13-11=2
la somme donne donc 0, 2, 4, 8, 10... et correspond à première suite.

Je n'arrive pas à comprendre la corrélation entre ces deux suites, est-ce que vous avez une explication ?

Je vous remercie.

Réponses

  • $3-2=0$ ? Vraiment ?

    Bon et si on somme les différences successives entre nombres premiers on trouve simplement par télescopage $p-2$, où $p$ est le dernier premier considéré :

    En notant $p_n$ le $n$-ième nombre premier, $(p_2-p_1) + (p_3-p_2) + \dots + (p_{n+1}-p_n) = p_{n+1} - p_1 = p_{n+1} - 2$. Tu es juste un peu décalé (de $1$ à cause de ton $3-2=0$ :-D ) dans ta suite ;-)
  • Je plagie ce que vient de dire Poirot avec moins de formalisme :\[\begin{array}{rcl}
    \text{différence}&&\text{sommes partielles}\\
    {\color{purple}{3-2}}=1&\quad&\\
    {\color{blue}{5-3}}=2&&{\color{blue}{5-3}}+{\color{purple}{3-2}}=5-2\\
    {\color{teal}{7-5}}=2&&{\color{teal}{7-5}}+{\color{blue}{5-3}}+{\color{purple}{3-2}}=7-2\\
    {\color{green}{11-7}}=4&&{\color{green}{11-7}}+{\color{teal}{7-5}}+{\color{blue}{5-3}}+{\color{purple}{3-2}}=11-2\\
    {\color{olive}{13-11}}=2&&{\color{olive}{13-11}}+{\color{green}{11-7}}+{\color{teal}{7-5}}+{\color{blue}{5-3}}+{\color{purple}{3-2}}=13-2\\
    {\color{lime}{17-13}}=4&&{\color{lime}{17-13}}+{\color{olive}{13-11}}+{\color{green}{11-7}}+{\color{teal}{7-5}}+{\color{blue}{5-3}}+{\color{purple}{3-2}}=17-2\\
    \text{etc.}\end{array}\]
  • Oui autant pour moi pour le $3-2=0$ :-)

    Ok, merci pour la clarté de vos réponses.
  • 440px-Wikipedia_primegaps.png

    Si ${\displaystyle p_{n}}$ est le n-ième entier premier, le n-ième écart est : ${\displaystyle g_{n}=p_{n+1}-p_{n}}$ soit : ${\displaystyle p_{n+1}=2+\sum _{i=1}^{n}g_{i}}$ . On a ${\displaystyle g_{n}<p_{n}}$ et ${\displaystyle g_{n}}$ devient de l'ordre de ${\displaystyle \log(n)}$
  • Salut.

    @fredrick a fait une étourderie, mais je me demande est-ce que ce qu'il insinue est vrai, s'il enlève le nombre premier pair $2$ et commence sa liste à partir de $2$ ?
  • Bonjour,
    Puisqu'on y est, quelle est la limite superieure de $\frac{p_{n+1}-p_n}{\log(n)}$?
  • La réponse à ma question, ainsi que d'autres choses intéressantes, se trouve ici: conjecture de Cramér.
  • En fait ça revient au même que ce qui est dit avec $2$. Ca donne $p_n - 3$. Je pensais qu'il voulait estimer $p_{n+1}$ connaissant tous les premiers jusqu'à $p_n$. Il n'en est rien.
Connectez-vous ou Inscrivez-vous pour répondre.