Pensez à lire la Charte avant de poster !

$\newcommand{\K}{\mathbf K}$


Les-Mathematiques.net - Cours de mathématiques supérieures
 Les-Mathematiques.net - Cours de mathématiques universitaires - Forum - Cours à télécharger

A lire
Deug/Prépa
Licence
Agrégation
A télécharger
Télécharger
153 personne(s) sur le site en ce moment
E. Cartan
A lire
Articles
Math/Infos
Récréation
A télécharger
Télécharger
Théorème de Cantor-Bernstein
Théo. Sylow
Théo. Ascoli
Théo. Baire
Loi forte grd nbre
Nains magiques
 
 
 
 
 

Rectangles et Rotations

Envoyé par d0x 
d0x
Rectangles et Rotations
il y a quatre mois
Bonjour à tous,

Etant une bille en mathématiques, je m'adresse à vous pour essayer de trouver une solution à mon problème.

Pour faire un résumé, il s'agit de retrouver le vecteur entre deux points dans un plan. Dans la suite j'ai mis quelques images pour illustrer un peu le propos, je cherche à retrouver les coordonnées (x', y') du coin supérieur gauche de mon rectangle orange (RO) sachant que je connais :

- les coordonnées (x, y) du coin supérieur gauche de mon rectangle vert (RV)
- les dimensions (l, h) de mon rectangle bleu (RB)
- les angles des deux rotations appliquées (A, B)

Il est important de comprendre que :

- la rotation A du rectangle RB entraine la création de son rectangle englobant RO
- on applique ensuite la rotation B à RO
- RV correspond alors au rectangle englobant de RB

Dans les exemples en image fournis en fin de message :

- ex1 : la rotation A est nulle donc RO est confondu avec RB ce qui explique qu'on ne le voit pas
- ex2 : exemple classique avec deux rotations positives (en l'occurence 10° et 20°)
- ex3 : exemple avec deux rotations de sens contraire (en l'occurence -10° et 20°)
- ex4 : les deux rotations se compensent exactement, par conséquent RV est confondu avec RB ce qui explique qu'on ne le voit pas

Merci d'avance pour votre aide ou vos conseils

d!





Re: Rectangles et Rotations
il y a quatre mois
Bonjour

Là je fais autre chose mais bon ça serai bien que tu écrive des lettres qui disent qui est qui sur tes dessins
capture écran puis stylo

Je suis persuadé que quelqu'un viendra (ça se trouve quelqu'un viendra sans mais donne toi des chances camarade)

bon je retourne à mon bidule
Re: Rectangles et Rotations
il y a quatre mois
Bonjour

sans lettres sur tes images et comme tu ne le dis pas non plus

Je suppose que le centre de ta rotation s'effectue sur la sécante des médianes de ton rectangle vert

et ensuite je suppose que pour la rotation identité (donc nulle ou de congruence nulle i.e avant que s'effectue une rotation) les côtés deux à deux du rectangle bleu seront parallèles deux à deux aux côtés du rectangle orange quand il y aura rotation

selon la figure ci-dessous



bon avant de continuer est-ce que j'ai pigé ce que tu voulais dire?
d0x
Re: Rectangles et Rotations
il y a quatre mois
Bonjour,

merci pour ces premières réponses, je vais essayer d'être un peu plus clair.

Ci-dessous une image avec chaque élément marqué. Pour rappel, l'objectif est de trouver (x',y') !

Attention les quatre exemples donnés précédemment sont les résultats finaux à chaque fois. Les étapes intermédiaires ne sont pas dessinées.
Si vraiment c'est nécessaire je pourrai le rajouter mais c'est un peu long à dessiner... ^^

Pour répondre à ta question cuvedepr, les deux rotations n'ont pas le même centre.
La rotation A a pour centre cA l'intersection des diagonales du rectangle bleu RB.
La rotation B a pour centre cB l'intersection des diagonales du rectangle orange RO.


Re: Rectangles et Rotations
il y a quatre mois
Merci là j'ai compris pour les rotations(j'étais loin du compte en fait)

bon sinon j'ai encore un petit problème

les coordonnées (x,y) d'un point sont celles d'un repère

il a donc une origine (0,0) , elle est où? peut tu me la placer sur ta figure?

et placer les vecteurs de ta base?



Edité 1 fois. La dernière correction date de il y a quatre mois et a été effectuée par cuvedepr.
Re: Rectangles et Rotations
il y a quatre mois
Bonjour

Je peux me tromper mais comprend pourquoi je te demande de me donner un repère :

dans ton système de rotations

les centres de rotation de tes rectangles vont translater à cause du fait que leurs dimensions vont changer et que le centre de rotation d'un rectangle est la sécante de ses diagonales

pour des raisons pratiques on ne vas pas prendre pour repère de coordonnées un repère qui va se transformer

À la limite ça ne pose pas de problème de se construire un repère en le choisissant avant que l'on effectue les rotations mais ça pose un problème si je décide de tout
Re: Rectangles et Rotations
il y a quatre mois
NB : en ce qui concerne les rotations (mais va falloir aussi régler l'autre problème vu que tu demande des coordonnées cartésiennes) pour être certain que j'ai bien compris ce que tu veux, on est bien d'accord que les rotations sont discrètes et pas du tout continues (sinon j'aurai tout lu de travers et j'aurai strictement rien compris)

je me donne une rotation sur le rectangle bleu

puis je calcule mon rectangle orange

puis je calcule mon rectangle vert

puis je recalcule mon rectangle bleu

fin d'un cycle
Re: Rectangles et Rotations
il y a quatre mois
NB + :

après pour le calcul d'un rectangle englobant même si là je pense que le préciser est un peu idiot (mais ça fait pas de mal de l'accepter)

il faut orienter le plan puis borner une rotation discrète en valeur absolue [0,90°]

donc borner cette rotation (discrète suite à ma note du post précédent) sur [-90°;+90°]

sinon on va avoir un problème sur la notation des sommets d'un rectangle à calculer

je m'explique :

prenons ABCD le rectangle à calculer suite à la rotation discrète de l'autre qui lui précède et notons A'B'C'D' le rectangle ainsi obtenu

alors un vecteur directeur de la droite [ edit multiples ….] (AB) droite portant le coté [AB] du rectangle à calculer sera colinéaire à celui de la droite (A'B')

si on ne borne pas la rotation on ne saura pas de quel côté on parle

idem vecteur directeur de la droite (BC) l'autre droite portant le coté [BC] du rectangle à calculer sera colinéaire à celui de la droite (B',C')

et on déduit les deux autres côtés de ce rectangle



Edité 5 fois. La dernière correction date de il y a quatre mois et a été effectuée par cuvedepr.
Seuls les utilisateurs enregistrés peuvent poster des messages dans ce forum.

Cliquer ici pour vous connecter

Liste des forums - Statistiques du forum

Total
Discussions: 131 411, Messages: 1 263 640, Utilisateurs: 22 094.
Notre dernier utilisateur inscrit Beta+.


Ce forum
Discussions: 7 699, Messages: 87 759.

 

 
©Emmanuel Vieillard Baron 01-01-2001
Adresse Mail:

Inscription
Désinscription

Actuellement 16057 abonnés
Qu'est-ce que c'est ?
Taper le mot à rechercher

Mode d'emploi
En vrac

Faites connaître Les-Mathematiques.net à un ami
Curiosités
Participer
Latex et autres....
Collaborateurs
Forum

Nous contacter

Le vote Linux

WWW IMS
Cut the knot
Mac Tutor History...
Number, constant,...
Plouffe's inverter
The Prime page