Pensez à lire la Charte avant de poster !

$\newcommand{\K}{\mathbf K}$


Les-Mathematiques.net - Cours de mathématiques supérieures
 Les-Mathematiques.net - Cours de mathématiques universitaires - Forum - Cours à télécharger

A lire
Deug/Prépa
Licence
Agrégation
A télécharger
Télécharger
161 personne(s) sur le site en ce moment
E. Cartan
A lire
Articles
Math/Infos
Récréation
A télécharger
Télécharger
Théorème de Cantor-Bernstein
Théo. Sylow
Théo. Ascoli
Théo. Baire
Loi forte grd nbre
Nains magiques
 
 
 
 
 

Tétraèdre régulier

Envoyé par OShine 
Tétraèdre régulier
il y a deux mois
Bonsoir,

Je ne sais pas résoudre cette énigme et j'ai regardé la solution je n'ai pas compris leur histoire d'arrêtes opposées.


Dom
Re: Tétraèdre régulier
il y a deux mois
Même en tâtonnant ?
Re: Tétraèdre régulier
il y a deux mois
avatar
Quelles sont les possibilités pour R et S ?
Est-ce que par exemple, 11 peut être un sommet ?
Est-ce que 1 peut être une arête ?
De même peut-on réduire les possibilités ?



Edité 2 fois. La dernière correction date de il y a deux mois et a été effectuée par zeitnot.
Re: Tétraèdre régulier
il y a deux mois
avatar
Les maths au collège, ce sont des devinettes, au jour d'aujourd'hui ?
Re: Tétraèdre régulier
il y a deux mois
avatar
Bonjour.

Pourquoi le tétraèdre doit-il être régulier ?

À bientôt.
Re: Tétraèdre régulier
il y a deux mois
avatar
Citation
Chaurien
Les maths au collège, ce sont des devinettes, au jour d'aujourd'hui ?

Entre autres, pourquoi pas ?
C’est toujours mieux que des expressions lourdement redondantes (graissée par moi). grinning smiley

Le café est un breuvage qui fait dormir,
quand on n’en prend pas.
-+- Alphonse Allais -+-
Re: Tétraèdre régulier
il y a deux mois
avatar
Ou sinon, oublie le 9. Essaie de construire des tétraèdres qui correspondent aux contraintes. Tu devrais t'apercevoir en moins d'une minute qu'il y en a très peu.
Re: Tétraèdre régulier
il y a deux mois
avatar
La cigale ayant joué durant toute sa scolarité au collège se retrouve un jour en maths expertes en terminale. Mon dieu, mais comment faire pour résoudre sans calculatrice cette équation du premier degré avec des fractions? C’est bien trop difficile pour moi! Tu peux m’aider? (en s’adressant à sa voisine la fourmi).
Mais que faisais-tu au collège?
Je jouais! C’était super, il y avait des devinettes tous les jours!
Hé bien continue alors, joue...smiling bouncing smiley
Re: Tétraèdre régulier
il y a deux mois
avatar
@ Nicolas.Patrois à propos d'«au jour d'aujourd'hui».
Je me suis déjà expliqué sur cette expression populaire que j'utilise volontairement.

Le Grand Métingue du Métropolitain (Mac-Nab, 1887)

Peuple français, la Bastille est détruite,
Et y a z'encor des cachots pour tes fils!..
Souviens-toi des géants de quarante-huite
Qu'étaient plus grands qu' ceuss' d'au jour d'aujourd'hui
Car c'est toujours l' pauvre ouverrier qui trinque,
Mêm' qu'on le fourre au violon pour un rien,
C'est quand mêm' lui qui fait marcher l'bastringue,
Le grand bastringu' du Métropolitain!




Edité 1 fois. La dernière correction date de il y a deux mois et a été effectuée par Chaurien.
Re: Tétraèdre régulier
il y a deux mois
À noter : compte tenu des symétries du tétraèdre, il y a plusieurs manières de numéroter tout en respectant les contraintes de l'énoncé. Cependant, toutes donnent la même valeur à TU.
Re: Tétraèdre régulier
il y a deux mois
Sinon, méthode sans tâtonnement ni supposition. On fait la somme de tout : $1+2+3+4+5+6+7+8+9+11 = R+S+T+U+RS+RT+RU+ST+SU+TU$ et on réarrange la somme de droite, en se servant du fait que la valeur de chaque arête est la somme de ses sommets.
Re: Tétraèdre régulier
il y a deux mois
Chaurien : tu n'as pas fait partie de la FFJM à une époque ? Le Kangourou, ça date quand même de plus de 25 ans, ce n'est pas nouveau.

Biely : les jeux et les maths ne sont pas incompatibles du tout. Evidemment, si on ne fait que des jeux...
Dom
Re: Tétraèdre régulier
il y a deux mois
Dire « ce sont des jeux » est très subjectif.
On a le droit de considérer que les mathématiques constituent un jeu (« intellectuel » si l’on souhaite trouver un qualificatif).

J’entends bien le véritable reproche cependant : l’activité qui consiste à chercher des démonstrations a quasiment disparu dans certaines pratiques de l’enseignement des mathématiques.
Re: Tétraèdre régulier
il y a deux mois
Si je donnais ça à des élèves, je leur présenterais une solution ainsi, essentiellement à l'oral, en m'appuyant sur un dessin sur lequel je teste les valeurs :

Ajouter les valeurs de 4 sommets, R+S+T+U, c'est ajouter les valeurs de deux arêtes opposées (R+S) + (T+U) par exemple. Voilà pourquoi la somme de deux arêtes opposées est une constante.

Le 11 est nécessairement la valeur d'une arête. Pourquoi ?
9 ne peut pas être un sommet, c'est donc aussi une arête. Pourquoi ?

Si 8 était un sommet, alors l'une des 3 arêtes vaudrait au moins 12. Pourquoi ? Donc 8 est une arête.

On a trois valeurs d'arêtes sur les 6. Deux de ces arêtes peuvent-elles être opposées ? 9 + 8 est le seul choix possible, mais on l'élimine rapidement car 11 irait avec 6, puis on n'a plus de couple pour faire 17.

Donc 11, 8 et 9 sont des valeurs d'arêtes qui partent d'un même sommet.

Quelle valeur met-on à l'opposé de l'arête qui vaut 11 ?

Ni 1, ni 2, réservées aux sommets. Il reste 3, 4, 5, 6 et 7.

On essaie 3, bingo !

Par acquis de conscience, on élimine facilement 7, 6 et 5. On élimine 4 toujours par essais/erreurs.


Je pose souvent des questions du concours kangourou. Elles permettent de faire réfléchir sans trop de prérequis, elles peuvent illustrer le début d'un cours, ici la notion d'inconnue par exemple. Et surtout je les utilise pour obliger les élèves à expliquer ce qu'ils font, pourquoi ils éliminent ou gardent, pourquoi avoir une trace écrite, même au brouillon est indispensable...
Re: Tétraèdre régulier
il y a deux mois
Il y a trop de possibilités. Je peux avoir R=2 et S=7 ou R=7 et S=2 ou R=3 et S=6 etc...

Lourran je ne comprends pas pourquoi tu dis qu'en dessinant c'est rapide je vois des dizaines de possibilités.

Guego ça va faire une équation a $4$ inconnues.

Poli je ne comprends pas ce passage :

"Ajouter les valeurs de 4 sommets, R+S+T+U, c'est ajouter les valeurs de deux arêtes opposées (R+S) + (T+U) par exemple. Voilà pourquoi la somme de deux arêtes opposées est une constante."

Pourquoi ça implique que la somme de deux arrêtes opposées est constante ?
Re: Tétraèdre régulier
il y a deux mois
Ok merci, je réfléchis.



Edité 2 fois. La dernière correction date de il y a deux mois et a été effectuée par OShine.
Re: Tétraèdre régulier
il y a deux mois
avatar
@ kioups
Bien sûr, je me suis beaucoup intéressé aux mathématiques récréatives, mais je n'aime pas la confusion des genres avec les apprentissages nécessaires au collège et au lycée. Je me suis toujours opposé à cette idéologie des « maths-sans-prérequis » parées de toutes les vertus (y compris égalitaristes), opposées au « bourrage-de-crâne » chargé de tous les vices.
Dans chaque classe, il doit y avoir un programme qui soit une liste de questions à traiter. Sur la base des connaissances ainsi acquises, on peut poser des problèmes qui font appel à l'initiative et à la créativité des élèves. Comme disait mon oncle Émile : « une tête bien faite se remplit facilement ».
Bonne journée.
Fr. Ch.
Re: Tétraèdre régulier
il y a deux mois
avatar
Chaurien, bien choisis, ces exercices permettent de revoir certaines notions et d’en utiliser d’autres (au hasard, le principe des tiroirs).

Le café est un breuvage qui fait dormir,
quand on n’en prend pas.
-+- Alphonse Allais -+-
Re: Tétraèdre régulier
il y a deux mois
Chaurien : justement, il s'agit d'un exercice demandant quelques notions. Certainement pas un exercice de début de chapitre.
Re: Tétraèdre régulier
il y a deux mois
C'est un exercice difficile. C'est la question 24 du concours kangourou 4ème/3ème 2013.

J'ai enfin compris que les 3 sommes de 2 arêtes opposées sont égales puisque chacune égale à la somme de 4 sommets. Du coup, en utilisant les différentes indications que vous m'avez donné j'ai enfin trouvé la solution eye popping smiley

On a donc $9+ UT=ST + RU=SU+RT$

Il est temps d'utiliser le fait que la somme totale vaut : $56$.

$56=R+S+T+U+RS+UT+ST+RU+SU+RT = 4 (9+UT)$

Donc $9+ UT= \dfrac{56}{4}$ d'où $UT=14-9$ enfin $\boxed{UT=5}$

Costaud cet exercice angry smiley
Re: Tétraèdre régulier
il y a deux mois
Je n'ai pas utilisé le fait que le tétraèdre est régulier.
Re: Tétraèdre régulier
il y a deux mois
avatar
Citation
OShine
Costaud cet exercice angry smiley

J'avoue OShine que je trouve ton attitude singulière.

Tu utilises le "angry smiley", après "costaud cet exercice". Généralement, en mathématiques comme ailleurs, on est plutôt content de triompher de quelque chose qui nous pose problème.
Je me suis mis à la guitare, quand j'arrive à faire un truc costaud sur lequel je bute longuement, je suis super content et fier d'avoir persévéré et réussi. Comme lorsque je n'arrive pas à réussir un exo de mathématiques, après une grosse prise de tête je suis finalement content d'avoir trouvé. Chez toi ça provoque un sentiment de colère, ce n'est pas banal.



Edité 2 fois. La dernière correction date de il y a deux mois et a été effectuée par zeitnot.
Re: Tétraèdre régulier
il y a deux mois
Zeitnot oui c'est vrai, hier je n'y comprenais rien et ce matin non plus, c'est vrai que ça libère de enfin comprendre la solution.

Franchement je le donnerai jamais à des élèves, trop compliqué.
Re: Tétraèdre régulier
il y a deux mois
avatar
Il y a une démarche beaucoup plus simple.

Je dessine un tétraèdre vierge.
Je dois placer le 1 quelque part : il ne peut pas être sur une arête, je le place donc sur un sommet.
Je dois placer le 2 : pas le choix, sur un sommet.
Du coup, le 3 est placé, sur l'arête reliant 1 et 2.
Je dois placer le 4 : il ne peut être que sur un sommet.
Du coup le 5 et le 6 sont placés sur les arêtes 4/1 et 4/2.
Je place le 7, forcément c'est le dernier sommet.
Et 8, 9 et 11, ce sont les nombres sur les arêtes 7/1, 7/2 et 7/4
Terminé.

Il y a une seule façon de disposer les 10 nombres sur le tétraèdre, et on n'a plus qu'à lire le nombre qui est "en face" de 9.
Et c'est effectivement le nombre 5.

Le 9 qu'on nous a gentiment placé sur le dessin est en fait un cadeau empoisonné. Il ne faut surtout pas s'en servir.
Dom
Re: Tétraèdre régulier
il y a deux mois
En regardant le tétraèdre du dessus, ça donne un diagramme « plan » (un graphe plan) que l’on peut donner aux élèves.
Dans les rallyes maths cycle3-4, c’est proposé comme ça, en général.
Re: Tétraèdre régulier
il y a deux mois
avatar
J'avais procédé en gros comme Lourran.
Re: Tétraèdre régulier
il y a deux mois
avatar
Si un élève de 4ème passe par la somme de tout qui doit donner 56, etc etc sans qu'on lui ait donné d'indice, il faut de suite emmener cet enfant chez un spécialiste. Cet enfant n'a rien à faire en 4ème, il a plus sa place comme bête curieuse dans un cirque, ou étudiant en doctorat.
Re: Tétraèdre régulier
il y a deux mois
Lourran très intéressant merci.

On retrouve bien que l'arête opposée de celle de longueur 9 est celle de longueur 5 avec cette méthode.
Re: Tétraèdre régulier
il y a deux mois
avatar
Je suis toujours étonné que tu ne trouves pas toi-même cette démarche.

En fait, cet exercice pourrait être présenté autrement.
On prend les 10 nombres 1,2,3,4,5,6,7,8,9,11.
Il faut disposer ces nombres sur les sommets et les arêtes d'un tétraèdre, avec comme contrainte : Pour chaque arête, le nombre écrit sur le segment correspond à la somme des 2 nombres écrits aux extrémités.
Question 1 : Batir un tétraedre qui obéit à cette contrainte.
Question 2 : Sur ce tétraèdre, 9 est il sur une arète ou sur un sommet ?
Question 3 : Si 9 est sur une arète, quel est le nombre sur l'arète opposée ? Et sinon , refaire un autre tétraèdre, pour que 9 soit sur une arète.

En fait, l'élève de 4ème, à partir de l'énoncé proposé, soit il reste devant sa feuille blanche , en se demandant quel théorème il va pouvoir utiliser, comme toi.
Soit il se retrousse les manches, il prend sa feuille de brouillon, et il reformule l'exercice original , en se posant les 3 questions que j'ai écrites ici.



Edité 1 fois. La dernière correction date de il y a deux mois et a été effectuée par lourrran.
Re: Tétraèdre régulier
il y a deux mois
avatar
Cela existe encore de nos jours un élève de quatrième qui se retrousse les manches?grinning smiley
Re: Tétraèdre régulier
il y a deux mois
J'ai un élève de 4ème très fort (20/20) au dernier DS, je pense qu'il trouvera.

Je le mettrai en bonus au prochain contrôle.

Oui c'est plus simple si on ne place pas le 9 sur une arrête.
Re: Tétraèdre régulier
le mois dernier
La réponse est bien 5. En tâtonnant,
Si RS=9 alors par symétrie on peut supposer que S>R. On a donc 4 possiblités (R,S)= (1,8) ou (2,7) ou (3,6) ou (4,5)
Avec le couple (2,7) on met U=1 et T=4 on obtient UT=5
Dans cet exercice ils demandent juste de choisir entre A,B,C,D,E donc il suffit de trouver une solution qui fonctionne. Pas besoin de tester les autres cas.
Seuls les utilisateurs enregistrés peuvent poster des messages dans ce forum.

Cliquer ici pour vous connecter

Liste des forums - Statistiques du forum

Total
Discussions: 149 194, Messages: 1 506 365, Utilisateurs: 27 652.
Notre dernier utilisateur inscrit guitoune.


Ce forum
Discussions: 2 827, Messages: 65 090.

 

 
©Emmanuel Vieillard Baron 01-01-2001
Adresse Mail:

Inscription
Désinscription

Actuellement 16057 abonnés
Qu'est-ce que c'est ?
Taper le mot à rechercher

Mode d'emploi
En vrac

Faites connaître Les-Mathematiques.net à un ami
Curiosités
Participer
Latex et autres....
Collaborateurs
Forum

Nous contacter

Le vote Linux

WWW IMS
Cut the knot
Mac Tutor History...
Number, constant,...
Plouffe's inverter
The Prime page