Pensez à lire la Charte avant de poster !

$\newcommand{\K}{\mathbf K}$


Les-Mathematiques.net - Cours de mathématiques supérieures
 Les-Mathematiques.net - Cours de mathématiques universitaires - Forum - Cours à télécharger

A lire
Deug/Prépa
Licence
Agrégation
A télécharger
Télécharger
275 personne(s) sur le site en ce moment
E. Cartan
A lire
Articles
Math/Infos
Récréation
A télécharger
Télécharger
Théorème de Cantor-Bernstein
Théo. Sylow
Théo. Ascoli
Théo. Baire
Loi forte grd nbre
Nains magiques
 
 
 
 
 

Situation de proportionnalité

Envoyé par Arturo 
Situation de proportionnalité
il y a deux mois
Bonjour,

voici une question assez traditionnelle.

Quelque chose m'interroge.
Pour savoir si un tableau est un tableau de proportionnalité, on calcule tous les quotients pour déterminer s'ils sont égaux entre eux.
SI c'est le cas, c'est un tableau de proportionnalité ; sinon, ce n'est pas un tableau de proportionnalité.

Mais pour savoir si le prix est proportionnel au nombre de tours de manège ou pour savoir si la situation décrite est une situation de proportionnalité, il faudrait faire tous les calculs de quotients (et il y en a une infinité) pour être certains que c'est le cas tout le temps.

En fait, on déduit sur 5 calculs de quotients que la situation globale est une situation de proportionnalité (que le prix est proportionnel au nombre de tours de manège).
Or, on n'a pas calculé tous les quotients (et je comprends que, techniquement, c'est compliqué).

J'aimerais avoir un retour de votre part à ce sujet.
Merci pour votre intervention. :)


Dom
Re: Situation de proportionnalité
il y a deux mois
Tu as bien dit les choses.

On ne démontre pas que la situation est une situation de proportionnalité.
On démontre que le tableau est un tableau de proportionnalité.

On peut en parler aux élèves.

Réciproquement, je regarde l’énoncé « j’ai acheté une boîte de chocolats 13€, combien coûtent deux boîtes de chocolats ? ».
Il y a un sous-entendu très très fréquent dans tous ces genres de problèmes.
On les pose à des écoliers même sans jamais évoquer la proportionnalité.
Il faut bien faire comme ça, je pense... et puis il y a ensuite l’espèce de chose tacite « si on ne dit rien de plus c’est que c’est proportionnel ».

Ensuite il faut faire attention à ce que l’on fait.
Dans la plupart des exercices proposés, l’élève doit savoir (ou deviner ?) quand la situation est de proportionnalité ou pas.
Ex 1 : les boites de chocolats.
Ex 2 : à dix ans il mesurait 1,20 m, combien mesurait-il à vingt ans ?
Ex 3 : pour une tartelette dans un four à chaleur tournante, il faut 10 minutes de cuisson, combien de temps de cuisson faut-il pour deux tartelettes dans un four à chaleur tournante ?

Ça m’évoque un peu les mêmes problèmes d’implicites dans les exercices de probabilité avec l’expression « au hasard ».
Bon, toute proportion gardée si j’ose dire.
Re: Situation de proportionnalité
il y a deux mois
Okay, Dom. :)

Il faut donc rester sur le tableau de proportionnalité qui traduit la proportionnalité avec les valeurs inscrites dedans.
Mais quid d'une valeur qui n'est pas dedans type "On sait que 1 tartelette coute 1 €, 2 tartelettes coûtent 2 €: et pour 3 tartelettes ?".
A priori on ne peut pas savoir sauf, si pour cette question précisément, on indique qu' "On admet que le tableau décrivant une situation de proportionnalité, on l'établit pour toute la situation" (c'est mal dit, c'est à reformuler, c'est l'idée).

Et que pensez des exercices type "L'âge est-il proportionnel à la taille ?", "Le prix à payer est-il proportionnel au volume d'essence ?", etc. ?
Il faudrait peut-être ajouter dans la question, "Intuitivement et sans justifier sa réponse, est-ce que l'âge est-il proportionnel à la taille ?"
Re: Situation de proportionnalité
il y a deux mois
avatar
Bonjour,

Je pense que tu te trompes. Tu décris une situation fausse et tu conclus qu’il y a un problème.

Il suffit de décrire une situation vraie pour éliminer le problème.

L’exercice est bien posé. Et il n’a y aucun problème. Relis le.

Quand tu écris qu’il faudrait connaître tous les prix pour conclure : c’est rigoureusement faux. C’est une grave erreur de raisonnement. Par exemple, pour savoir si trois points sont alignés, on n’a pas besoin de vérifier l’alignement de tous les autres points de la droite support.
Dom
Re: Situation de proportionnalité
il y a deux mois
Tu connais le prix pour 4 tours, Yves, grâce à ce tableau ?



Edité 1 fois. La dernière correction date de il y a deux mois et a été effectuée par Dom.
Re: Situation de proportionnalité
il y a deux mois
Oui, tu prends 3 tours puis 1 tour. Ou deux fois deux tours.
Re: Situation de proportionnalité
il y a deux mois
avatar
Bonjour,

@Dom : Tu fais encore une grave erreur de raisonnement. Relis l’exercice. On ne demande pas de deviner le prix pour quatre.

On demande si trois points sont alignés. La réponse est oui.
Tu me demandes : si j’ajoute un point sur le plan, sera-t-il aligné ? La réponse est oui ou non.

Il ne faut pas inventer un problème qui n’existe pas.
Dom
Re: Situation de proportionnalité
il y a deux mois
« Le prix est-il proportionnel au nombre de tours de manège ? »

Si tu me traduis ce que tu comprends dans cette question on pourra peut-être tomber d’accord.
Je t’écoute, si tu veux bien.

Remarque :
amusant de voir « nombres de tours » dans le tableau mais seulement « nombre de tours » dans la consigne.

kioups,
Amusante remarque mais c’est n’importe quoi.
Justement on ne sait pas s’il faut faire 4 fois un tour ou 3 tours et 1 autre et si ça coûte la même chose.
Sauf si... ha bah oui... sauf si...



Edité 2 fois. La dernière correction date de il y a deux mois et a été effectuée par Dom.
Re: Situation de proportionnalité
il y a deux mois
Je précise que je l'ai trouvé sur Internet comme exemple de mon propos. :)
Re: Situation de proportionnalité
il y a deux mois
avatar
Jamais vu un tel tableau chez un forain pour des tours de manège...Le niveau a tellement baissé que l’on considère que la table de deux est trop difficile?grinning smiley
Re: Situation de proportionnalité
il y a deux mois
avatar
Est-ce qu'on voit chez le boulanger un tel tableau alors qu'on peut faire plus concis: une baguette* (ou un tour de manège) a pour prix 2 euros? eye rolling smiley

*: je n'achète plus de baguette depuis longtemps mais je suppose que le prix moyen d'une baguette ordinaire est compris entre 1 et 2 euros.

Je vis parce que les montagnes ne savent pas rire, ni les vers de terre chanter.(Cioran)



Edité 1 fois. La dernière correction date de il y a deux mois et a été effectuée par Fin de partie.
Re: Situation de proportionnalité
il y a deux mois
avatar
Dans les supermarchés il faut en revanche faire très attention à des ’’un paquet à 1,23€’’ et le ’’pack ’’économique’’de 8 paquets à 9,95€"...grinning smiley
[youtu.be]
Le prix moyen d’une baguette se situe autour des 0,95€ je pense mais tout dépend de la baguette...La baguette à 2€, peut-être dans dans certaines boulangeries parisiennes et encore.



Edité 1 fois. La dernière correction date de il y a deux mois et a été effectuée par biely.
Dom
Re: Situation de proportionnalité
il y a deux mois
Les masses d’un cocker par rapport à son âge sont présentées dans le tableau suivant :

Âge      2 ans     4 ans 
Masses   4 kg      8 kg

La masse est-elle proportionnelle à l’âge ?

Yves, pour ne pas faire d’erreur de raisonnement, que répondrais-tu ?

kioups, pour 3 ans, tu aurais une méthode ? ou peut-être pour 6 ans ?
Re: Situation de proportionnalité
il y a deux mois
avatar
Citation

on calcule tous les quotients

Sauf bien entendu, le 0 sur 0 lorsqu'il apparaît dans le tableau. Il faut quand même le signaler aux élèves je pense.
Re: Situation de proportionnalité
il y a deux mois
avatar
Bonjour,

$4/2=2$ et $8/4=2$ donc c’est le même ratio donc la masse est proportionnelle à l’âge dans ce tableau.
Dom
Re: Situation de proportionnalité
il y a deux mois
Tiens c’est marrant ce besoin d’ajouter « dans ce tableau ».
Ça sort d’où ? grinning smiley

La question n’est pas « dans ce tableau ». Relis le problème soi-disant bien posé winking smiley



Edité 1 fois. La dernière correction date de il y a deux mois et a été effectuée par Dom.
Re: Situation de proportionnalité
il y a deux mois
C'est bien tortiller du c** pour ch*** droit. Ceci dit, c'est important à l'oral de dire que des situations de la vie courante sont des situations de proportionnalité (pas forcément toujours, mais dans un cadre "normal") et que d'autres n'en sont pas, alors qu'elles ont l'air. J'ai 20 ans, mon père a 3 fois mon âge, quel âge aura-t-il quand j'aurai le double de mon âge actuel ? eh oui, j'ai 20 ans, que ça vous plaise ou non.
Re: Situation de proportionnalité
il y a deux mois
avatar
Bonjour,

Quand tu demandes si trois points du plan sont alignés, on répond ils le sont quand ils le sont.
Tu n’en déduis pas que tout autre point du plan est dans la même droite.

Mais, pour une raison incompréhensible et surréaliste, quand on te demande si des suites de nombres sont en proportions, tu veux imposer que tout nouveau couple de nombres ajoutés à ces suites le soit aussi.
Mazette !
Dom
Re: Situation de proportionnalité
il y a deux mois
Tu as demandé de lire.
Et toi-même ne le fais pas.

Tu dis : « quand on te demande si des suites de nombres sont en proportions ».
Ce n'est pas ce qui est demandé ! Sauf dans la tête de l'auteur, certainement.

La question n’est pas « dans ce tableau ». C’est ça que je pointe du doigt.
Ce ne sont pas justement des suites de nombres.

Lis-donc !!!

Lis-tu « ces prix sont-ils proportionnels... ? » ?
Moi je lis « le prix est-il proportionnel... ? ».

Maintenant tu fais semblant.
Et tu t’es bien imposé de répondre en ajoutant « dans ce tableau ».
Aurais-tu osé la phrase : « Oui, le prix est proportionnel au nombre de tours. » ?



Edité 2 fois. La dernière correction date de il y a deux mois et a été effectuée par Dom.
Re: Situation de proportionnalité
il y a deux mois
avatar
Un peu dans le même style...grinning smiley


Dom
Re: Situation de proportionnalité
il y a deux mois
Hum...
La mauvaise foi est de l’autre côté.
Surtout quand on y ajoute « relis » !

Cela dit les messages sur "attention au zéro" et sur "attention aux situations courantes" sont les plus pertinents.
Ce qui compte dans ces exercices, c’est justement le discours par rapport au réel.
Aussi le discours sur « ce qu’attend l’auteur dans cet exercice ».



Edité 2 fois. La dernière correction date de il y a deux mois et a été effectuée par Dom.
Re: Situation de proportionnalité
il y a deux mois
avatar
Bonjour,

Ton propos n’a aucun sens.

Libre à toi de ne pas comprendre la proportionnalité.
Re: Situation de proportionnalité
il y a deux mois
avatar
Oui Dom ton premier message était extrêmement clair. YvesM est d’accord avec toi si j’ai bien compris et c’est cela le plus drôlegrinning smiley.
Dom
Re: Situation de proportionnalité
il y a deux mois
Pirouette cacahuète.

Bon dimanche quand même, Yves winking smiley
Re: Situation de proportionnalité
le mois dernier
avatar
En fait il y a d'un côté la réalité : un tableau p. ex.
et de l'autre un modèle mathématique : la proportionnalité.
La question est : ce modèle convient-il pour décrire cette réalité ?
Et dans quelles limites ?

Comme disait mon collègue philosophe, tenant un trousseau de clés
devant lui : "Jusqu'ici, quand je lâchais les clés, elles se dirigeaient
vers le bas."

"Arrête de retenir la terre avec tes jambes, laisse-la monter !"



Edité 1 fois. La dernière correction date de le mois dernier et a été effectuée par AD.
Re: Situation de proportionnalité
le mois dernier
@ Dom : oui la masse est proportionnelle à l'âge (dans ce problème).

Dire que la masse est proportionnelle à l'âge c'est dire qu'il existe une relation de proportionnalité entre les deux grandeurs. Mais c'est quoi une relation de proportionnalité entre deux grandeurs du point de vue géométrique ? Une droite passante par l'origine dans le plan R2 ayant pour axes des abscisses et ordonnées la masse et l'âge (seulement les valeurs positives). Combien de points faut-il pour préciser une droite passante par l'origine ? 2 points suffisent. Par conséquent en vérifiant que 4/2 = 8/4 on en déduit la droite (donc la relation de proportionnalité) en question.

Ca du point de vue mathématique. Du point de vue physique/modélisation il se peut que la relation de proportionnalité masse/age ne soit pas valable sur (R+) x (R+) tout entier. Mais la c'est un tout autre problème.
Dom
Re: Situation de proportionnalité
le mois dernier
Oui soland, et la question dans ses termes contient une généralité (c’est le désaccord avec Yves) alors que le tableau ne présente évidemment que des cas particuliers.

Autre exemple : La Tour Eiffel mesure 324 m et elle a 132 ans.

La taille de La Tour Eiffel est-elle proportionnelle à son âge ?

Certains répondent « oui » et d’autres « non ».

Serge,
C’est drôle, toi aussi, tu te sens obligé d’ajouter une parenthèse...

L’argument que tu donnes est pourtant le bon : une relation entre deux grandeurs !
Mais là, on ne peut pas le déduire. On n’a qu’une relation entre des mesures ponctuelles de ces grandeurs.
Dire « deux grandeurs » c’est universel, ce n’est pas en regardant quelques points.



Edité 5 fois. La dernière correction date de le mois dernier et a été effectuée par Dom.
Re: Situation de proportionnalité
le mois dernier
Dom: ""attention aux situations courantes"

euh, vous avez déjà emmené votre gosse faire des tours de manège.
Et déjà lu un écriteau aussi crétin?

Si 7 tours est plus cher au tour que 5 et 2 tours, euh???
beaucoup de gens pour acheter 7?

Si 7 tours est moins cher au tour que 10 tours, euh beaucoup de gens pour acheter 10 tours?

ce panneau est un exemple super-crétin digne du sketch "ici on vend de belles oranges pas cher"
Dom
Re: Situation de proportionnalité
le mois dernier
Je ne parlais pas de ça mais de tout ce qui peut concerner deux grandeurs dans la vie courante.
Bref.
Re: Situation de proportionnalité
le mois dernier
@ Dom : dans ton problème on demande s'il existe une relation de proportionnalité entre deux grandeurs. On donne 2 points. Or par 2 points passent une infinité de courbes dans le plan R2. Mais le problème ne s'interesse pas à toutes les relations possibles entre ces deux grandeurs, juste à la relation de proportionnalité (si elle existe). Relation de proportionnalité qui dans ce cas précis ci existe belle et bien. Je ne vois pas où est la difficulté.

Ton problème est formulé comme un probleme d'existence. Etant donne deux points existe-il une relation de proportionnalite entre les deux grandeurs en question ? Et la reponse est oui. Il existe bien une relation de proportionnalité.
Re: Situation de proportionnalité
le mois dernier
Bonjour Serge_S.

Manifestement, Dom et toi ne parlez pas du même énoncé. Tu traites (et d'autres avant toi) du tableau de données, lui de la situation concrète. Comme le tableau est associé à une situation concrète, on ne peut pas faire le matheux borné qui ne lit que les nombres. Et ce tableau se complète pas une donnée d'expérience : Pour l'âge 0 (la naissance), le poids n'est pas 0.

Ta façon de faire aboutit à ce qui fait rejeter les maths par les non matheux : les conclusions sont déraisonnables. Il y a déjà assez d'attaques contre la rationalité pour que nous n'y ajoutions pas de "bonnes raisons" de rejeter les conclusions "mathématiques".

Cordialement.
Re: Situation de proportionnalité
le mois dernier
avatar
Bonjour,

Certains d’entre vous critique le panneau, au motif qu’il indique le prix pour 1, 2, 3...5 tours alors qu’il est simplement proportionnel au prix d’un tour (sans rabais).

Un peu de marketing :
Avant d’acheter un bien, le consommateur, plus ou moins consciemment, compare le prix proposé à un prix de référence ou un intervalle de prix de référence.

Le directeur commercial, qui connaît son boulot, essaie donc d’influencer le prix de référence - à la hausse. Ainsi, le prix du bien semble acceptable.

Par exemple :
Pour le manège, le simple fait de voir 4, 5, 6 euros rend plus acceptable d’en payer 2 pour son enfant.

Pour un horloger, on place en vitrine des montres à 3 000 euros, sachant que la montre moyenne en boutique est à 150 euros.

Pour un chausseur, rue de Vaugirard à Paris, j’ai vu en grosses lettres à travers la vitrine : une paire de chaussure 250 euros, les deux à 375 euros. Dans la boutique (je suis rentré par curiosité), une belle paire de chaussures était à 190 euros. On voit bien que le client, influencé par l’intervalle 250 à 375 euros, trouve plus acceptable d’acheter à 190 euros.

Cette stratégie rentre dans la catégorie de « porte dans la figure ».
La stratégie opposée, le « pied dans la porte », consiste à afficher un prix d’appel très bas pour attirer le consommateur dans la boutique (et espérer qu’il achète d’autres biens que celui affiché).
Re: Situation de proportionnalité
le mois dernier
nombre de tours :1
prix :2 euros
s'agit-il d'une situation de proportionnalité?

dans la vraie vie: oui!
non?
Dom
Re: Situation de proportionnalité
le mois dernier
Serge,
Si c’était aussi net, tu n’aurais pas eu besoin d’ajouter cette parenthèse.
C’est tout ce que je dis.
Yves a aussi ajouté « dans ce tableau ».

Ça me permet d’être certain que vous avez compris le problème.
Je ne vois pas pourquoi vous argumentez contre vous finalement.

Toute ton interprétation est spéculative. « Ton problème s’intéresse à... ».
Je m’intéresse à la consigne. Je maintiens qu’en l’espèce elle est au moins ambigüe.
Je me fiche de ce qu’il y a dans la tête de l’auteur.
Qu’il y ai un seul point ou dix mille on ne peut pas en déduire une relation entre les deux grandeurs.

Je t’invite à regarder de près ce que j’ai dit aussi avec le singulier et le pluriel.
« Les prix affichés sont-ils proportionnels aux nombres de tours ? » (là on parle des relevés particuliers) n’est pas la même chose que « Le prix est-il proportionnel au nombre de tour » (là on parle d’une relation universelle qui n’est pas restreinte aux seuls relevés).

Enfin,
Je suis certain que si la question d’après est « quel est le prix pour 4 tours ? » vous allez tomber dans le travers que je dénonce. Reconnaissez-le, sauf avec un peu de malhonnêteté intellectuelle...
Re: Situation de proportionnalité
le mois dernier
@ gerard0 : alors il y deux problèmes.
Le premier : étant donné les deux point, sont-ils alignés avec le point origine ?
Reponse oui ils le sont.

Deuxième question : la droite dont on parle ci-dessus, représente-elle la relation de proportionnalité entre l'âge et la masse pour toutes les valeurs de l'âge (de 0 à l'infini) ou pas ? Ca c'est une question de modélisation qui sort du problème mathématique. Personne ne vit éternellement donc déjà l'intervalle de définition de la relation ne peut être R+ tout entier. Même problème pour le point origine. Est-ce qu'une masse nulle peut être assigné à un bébé qui n'est pas encore né ? Oui ou non, c'est un choix de modélisation. Les deux choix sont acceptables.

Donc si on veut donner une réponse la plus correcte possible on devrait dire que les trois points (les deux plus le point origine) sont alignés, mais que la relation de proportionnalité n'est valable que sur un intervalle borné de R*+ dont on sait qu'il doit contenir les abscisses des deux points du problème.
Re: Situation de proportionnalité
le mois dernier
"Je t’invite à regarder de près ce que j’ai dit aussi avec le singulier et le pluriel.
« Les prix affichés sont-ils proportionnels aux nombres de tours ? » (là on parle des relevés particuliers) n’est pas la même chose que « Le prix est-il proportionnel au nombre de tour » (là on parle d’une relation universelle qui n’est pas restreinte aux seuls relevés).

Enfin,
Je suis certain que si la question d’après est « quel est le prix pour 4 tours ? » vous allez tomber dans le travers que je dénonce. Reconnaissez-le, sauf avec un peu de malhonnêteté intellectuelle... "

4 tours c'est 8 euros monsieur, sans problème et jusqu'à information supplémentaire contradictoire.
Le reste est pinaillage.
Les maths c'est rester simple aussi
Re: Situation de proportionnalité
le mois dernier
Si 4 tours n'est pas à 8 euros,

alors c'est moins que 8 ou plus que 8
Moins que 8 euros, bon alors le 5 tours est ridicule, absurde, du incroyable de la vie de tous les jours puisque alors tu ne dis rien et paye 4 plus1
Plus que 8 euros, tu dis excusez moi je vais en prendre deux pour aujourd'hui et deux pour demain ,...

délirant ce truc.
Re: Situation de proportionnalité
le mois dernier
avatar
Je pense qu'il serait bon de revenir à la question d'Arturo.

Citation
Arturo
Or, on n'a pas calculé tous les quotients (et je comprends que, techniquement, c'est compliqué).

Quels sont les quotients qu'on n'a pas calculé.
Qu'est-ce qui est compliqué ?

Citation
Arturo
il faudrait faire tous les calculs de quotients (et il y en a une infinité)

Le consommateur peut acheter des carnets de 1, 2, 3 ,5 ou 10 tickets. Voilà ce qu'il peut acheter.
S'il veut acheter n tickets, avec n un entier qui n'est pas dans cette liste, il va devoir acheter panacher / combiner les carnets qui sont en vente.

Sur l'exemple que tu as donné, le prix unitaire revient à 2€, que l'on achète 1 ticket, ou un carnet de 2,3, 5 ou 10 tickets.
Quelque soit le nombre de tickets achetés par le consommateur, quelle que soit la façon dont il dispatche cela en carnets (10 carnets de 10, ou 20 carnets de 5, ou 50 carnets de 2 , ou 100 tickets à l'unité par exemple , pour un total de 100 tickets , ou 30 carnets de 3 tickets, plus un carnet de 10 ), le prix payé sera le même, et il paiera 2€ par ticket.

Même si dans le tableau, on n'a pas mis tous les nombres de 1 à 1000, je pense qu'on n'a pas besoin d'aider beaucoup les élèves pour qu'ils comprennent que 11 tickets, ça coûtera 22€
Qu'on achète 10 +1, ou 5+2+2+2 , ou 3+3+3+2 ....

Au besoin, s'il faut mettre du formalisme, il y a des 'propriétés' comme la distributivité de la multiplication par rapport à l'addition pour justifier tout ça bien comme il faut dans les règles de l'art.
Dom
Re: Situation de proportionnalité
le mois dernier
Oui mais beagle et lourrran, là on sort du sujet.
Évidemment que tout ce que vous dites est pertinent.

On parlait de l’exercice, de la consigne, etc.
Le « bon sens » c’est bien, c’est primordial.

Mais avec d’autres données (« des $x$ » et « des $y$ qu’on noterait des $f(x)$ ») tout ce que vous dites n’existent pas.
Il n’y a pas de manège ou de tickets.
Votre raisonnement fonctionne seulement parce qu’on parle d’un manège et de tickets et ça, ça sort complètement du champs mathématique. Ça marche parce que l’on adapte de l’expérience humaine.

L’erreur est dans la consigne qui se veut universelle sur les grandeurs.
Mais vous pouvez continuez à dire que c’est bien posé.

Remarque :
C’est quoi cet argument, beagle ?
« Jusqu’à information complémentaire contradictoire » ? confused smiley
Ça revient à compléter la suite « 1-2-3-4-... » par « 5 » jusqu’à information complémentaire contradictoire...
Re: Situation de proportionnalité
le mois dernier
l'argument beaglien c'est que le non dit, non explicité qui mènerait à une situation idiote, absurde,
ben cela revient à dire que ce non dit n'est pas dans le problème, que c'est faux pour le problème.

Donc nous sommes avec des maths pures ,abstraites, à support réel déjà crétin puisque aucun manège n'affiche des prix comme cela,
soit il ya remise avec le nombre, soit non et alors il n' ya qu'un seul prix.
Comme il a déjà été dit on ne dit pas le prix d'un café, deux cafés, trois cafés, quatre cafés sur la carte !!!

Donc, non Dom, c'est une nouvelle fois une volonté de rigueur castratrice comme dans bien d'autres exigences.
Le raisonnement par analogie, il est là et si on voulait une autre situation, ben faut le dire.
Si ce n'est pas dit alors

C'est bien plus que 1,2,3,4,5

Enfin le comique est de se prendre la tète avec du théorique sur une base crétine.
Franchement il ya du masochisme!
Dom
Re: Situation de proportionnalité
le mois dernier
L’exercice est débile à bien des égards.
Moi je me bats contre ceux qui disent qu’il ne pose aucun problème.

La volonté castratrice envers l’auteur oui.
La volonté destructrice envers des mômes, non, pas de ma part, mais plutôt de ceux qui ont tenu les discours que j’ai lus plus haut. On a eu la preuve d’un demi aveu avec des ajouts suspects.

Je suis d’accord sur le comique de la situation.
Re: Situation de proportionnalité
le mois dernier
Et que pensez des exercices type "L'âge est-il proportionnel à la taille ?", "Le prix à payer est-il proportionnel au volume d'essence ?", etc. ?
Il faudrait peut-être ajouter dans la question, "Intuitivement et sans justifier sa réponse, est-ce que l'âge est-il proportionnel à la taille ?"

moi c'est ça qui me parait suspect.
alors ne parlons plus de taille ni d'age, stop
utilisons des données issues des maths, des trucs qui n'existent pas.

étrange

C'est intuitif que les adultes ne grandissent plus??????



Edité 1 fois. La dernière correction date de le mois dernier et a été effectuée par beagle.
Re: Situation de proportionnalité
le mois dernier
Bonjour.

La fonction $f(x)=sin(\pi x)$ est une fonction constante sur $\mathbb{N}$.
Effectivement, ça choque.
De même, la fonction $g(x)=3.x.(sin(\pi x)+1)$ donne les allures de la proportionnalité sur $\mathbb{N}$.

Le fait de dire "La vérité est ailleurs, car on ne nous dit pas tout" n'est-elle pas complotiste ?

L'infinité des vérifications des quotients de Arturo n'y suffirait pas.


Re: Situation de proportionnalité
le mois dernier
avatar
Dom, tu te positionnes comme prof de maths. Moi, je me positionne comme prof de compréhension.
Le prof de maths doit être un prof de compréhension, avant d'être un prof de maths.

Ce que je dis n'existe pas avec des x et des y ? Peut-être, mais ça m'est strictement égal.

Les maths sont un outil, rien d'autre.
Cet exercice est débile si on s'intéresse uniquement aux 1% d'élèves qui veulent devenir prof de maths.
Si on s'intéresse à tous les élèves, cet exercice est bien conçu.
Re: Situation de proportionnalité
le mois dernier
De ce que je comprends, il faut "arrêter" de poser des questions générales (dans cet exemple, le prix est-il proportionnel au nombre de tours de manège ?) mais plutôt poser des questions liées aux valeurs du tableau (les prix indiqués sont-ils proportionnels au nombre de tours de manèges proposés ?).
C'est ça l'idée ?
Re: Situation de proportionnalité
le mois dernier
avatar
En précisant ainsi : les prix indiqués, c'est effectivement plus précis.

Mais l'énoncé initial était déjà parfait. A moins de vraiment vouloir couper les cheveux en 4, la situation était bien décrite.

La différence est imperceptible pour les élèves. Sur le plan pédagogique, c'est pareil.
Mais pour satisfaire un inspecteur tatillon qui se contrefout des élèves mais qui veut rappeler que c'est lui le chef, ta nouvelle formulation est peut-être mieux.
Re: Situation de proportionnalité
le mois dernier
Je me sens proche de lourran,

perso le bémol si j'étais inspecteur des travaux pas finis ,
je dirais:
pourquoi vous utilisez un exemple mathématique de prix avec proportionnalité,
dans une situation habituelle de la vie courante de non proportionnalité.
Vous n'avez pas assez d'exemple de proportionnalité dans la vie courante?

Donc pour moi cela passe si on pose deux tableaux, un proportionnel , un non proportionnel
et pourquoi quoi que c'est différent …
Cela permet de bosser les choses dans ce qu'elles sont et ce qu'elles ne sont pas,
et cela forme à une fibre commerciale, ptain les réducs!
des réducs!
Il faut en faire un exo sans remise et avec remise !!!!
Re: Situation de proportionnalité
le mois dernier
Et lourran,
tu savais comment que Dom était inspecteur?
Re: Situation de proportionnalité
le mois dernier
Pourquoi dis-tu "dans une situation habituelle de la vie courante de non proportionnalité." ?
Re: Situation de proportionnalité
le mois dernier
Euh, ben tu temps où j'emmenais ma fille faire du manège, il y avait une réduction si 5 ou 10 tickets
pour inciter à prendre un "carnet".
Pour aller comme lourran, les maths pour devenir mathématicien, les maths pour la vie de tous les jours, et les maths pour le commerce !
Seuls les utilisateurs enregistrés peuvent poster des messages dans ce forum.

Cliquer ici pour vous connecter

Liste des forums - Statistiques du forum

Total
Discussions: 149 335, Messages: 1 508 806, Utilisateurs: 27 697.
Notre dernier utilisateur inscrit J-Maths.


Ce forum
Discussions: 2 832, Messages: 65 403.

 

 
©Emmanuel Vieillard Baron 01-01-2001
Adresse Mail:

Inscription
Désinscription

Actuellement 16057 abonnés
Qu'est-ce que c'est ?
Taper le mot à rechercher

Mode d'emploi
En vrac

Faites connaître Les-Mathematiques.net à un ami
Curiosités
Participer
Latex et autres....
Collaborateurs
Forum

Nous contacter

Le vote Linux

WWW IMS
Cut the knot
Mac Tutor History...
Number, constant,...
Plouffe's inverter
The Prime page